
上海的便利店数据分析支持系统建设_数据分析师培训
1999年06月可的导入了海鼎HDPOS商品管理信息系统,实现商品流程的系统管理。随着商品业务数据的积累,利用这些数据为商品业务决策服务的需求非常自然的就产生了。虽然HDPOS系统本身带有功能非常强大的报表查询功能,但管理人员发现他们即使有这个查询工具也很难得到满足他们需要的信息和数据。在1999年10月,数据分析岗位设立,第一名数据人员上岗。于是管理人员除了直接从HDPOS系统的报表工具获取信息外,还依赖于数据分析人员。
HDPOS系统实质是面向业务操作的,商品运作和业务流程被表示为单据的流转,业务规则被系统统一为单据的操作规则,显然系统中数据的格式和储存必须首先满足单据操作规则。查询工具较好地解决了,以单据类型为中心面向操作人员的报表。而以问题为中心面向管理人员的报表,查询工具较难解决。问题的根源在查询工具面对的数据,而不是查询工具本身,通过查询工具的改进,还是不能根本解决管理人员的需求。
管理人员本来希望通过与业务系统的直接交互来得到数据和信息,现实是要通过数据分析人员与业务系统交互。数据分析工作对企业的重要性日益体现,2001年数据分析部门数据分析室成立,数据分析人员增加。
1.建设数据仓库
数据分析人员发现他必须首先对HDPOS系统数据库中的数据作加工,才能快速和正确相应管理人员的需求。在明确了解管理人员的问题,即分析和决策主题,对数据加工过程和规则掌握后,2001年数据分析部门开始构建面向分析和决策的数据仓库。
数据仓库的硬件是一台空间为150G的服务器,操作系统是win2000server,由于是数据分析人员自己构建,数据仓库选择了SQL2000。
1.1 数据粒度和事实表
在可的便利,分析数据中最常见的数据粒度是时间按月,业务单元到门店,商品单位到商品代码。在业务数据库(HDPOS)中,单据数据的时间是精确到秒的,部分单据业务单元是到门店下属的仓位。 在数据仓库中,储存了从2000年01月以后数据粒度为(月、店、单品)的销售、进货、配货、库存数据,这些数据都有数量、售价金额、去税售价金额、成本金额、去税成本金额五个值。并对配货和进货数据进行了统一处理,因为进货和配货有多种流程和单据。
在数据仓库中,储存了最近13个月的数据粒度为(日、店、单品)的销售、进货、配货数据
。 在数据仓库中,储存了指定日期的数据粒度为(时段、店、单品)的销售流水数据。
为满足预算和业绩管理,数据仓库中统一储存了各部门的预算和业绩考核数据。数据仓库还储存了来自于财务和发展部门的其他数据。
1.2维度数据
分析的水平、深度、和广度取决于维度数据,维度越多对fact数据的认识就越深刻。维度数据处理来源很多,是企业管理经验和数据的提练
商品的维度重要的有: 按分类体系 按商圈 按重要程度 按规格(部分商品) 按毛利率
门店的维度重要的有: 按组织体系 按单店水平 按地域分布 按产权属性 此外,还有关于供应商和业务人员的维度。
1.3 数据加工
数据仓库建在SQL2000上,于是使用SQL2000的数据转换功能,将数据抽取、清洗、整理的规则写成数据转换报。 月度数据和来自业务系统之外的数据加工,通过人工触发数据转换包实现。月度数据是在每月财务结算完毕后处理,外系统数据在收到数据后处理。
日事实数据和维度数据加工,通过SQL2000的作业机制,按时间规则每日自动调用数据转换报实现。首先清除数据仓库中最后六日的数据,然后导入最新七日的数据,通过这样的规则来保障数据仓库与业务数据库数据的一致性。 时段数据的加工,按需要的日期触发数据转换包实现。1. 4分析服务器使用SQL2000的Analysis Service作为OLAP服务器,将数据仓库中的数据加工成多维数据集(cube)。
目前仅使用数据仓库中的月度事实数据和时段事实数据来建立cube。
2.报表服务器和前端工具
报表服务器和前端界面工具均使用微软的EXCEL。
2.1 报表服务器
在服务器上安装excel软件,数据分析软件将报表逻辑用VBA写入excel文件中。利用window操作系统计划任务功能自动打开excel,执行VBA脚本。自动完成与数据仓库连结,制作多维数据透视表,将报表文件通过电子邮件发送到指定用户。
有了这个框架,分析报表体系就表现为excel文件的集合,每个多维数据透视表的excel文件针对一个管理主题。
2003年企业建成HDINTRA办公系统后,用户还通过浏览器以公文方式接收excel报表文件。报表服务器自动将excel报表文件上传到HDINTRA的ftp服务器。实现了数据分析系统与办公系统的集成。
2.2前端工具
用户收到excel数据文件后,打开后就可使用。Excel是标准的工具,现在管理人员都具有一定基础。操作上只需对管理人员进行多维数据透视表的使用。
3.数据分析人员
数据分析人员既是业务专家,又是信息系统专家,但首先必须是业务专家,尤其是企业内部的数据分析人员。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01