京公网安备 11010802034615号
经营许可证编号:京B2-20210330
浪潮计算+大数据 克服大数据“摩擦力”
“计算+”是浪潮集团副总裁王恩东在2015年浪潮信息全国合作伙伴大会(IPF15)上首次提出的新业务战略,指出了在物理世界信息化、信息世界智能化的发展趋势下,计算重心正在向后端转移,对后端计算能力提出了新的需求和挑战,融合架构将是应对这一挑战的最佳选择。
对于计算+与大数据之间的关联,浪潮云和大数据事业部总经理张东在IPF15大数据与应用分论坛上,对大数据业务做出了非常明确的定位,“未来80%以上的计算能力都会在数据处理上,计算和数据这两个概念是密不可分的,因此大数据业务是浪潮的核心业务,围绕计算+大数据将是我们重要的计算方向。”
大数据应用要克服“摩擦力”
大数据无疑是当下最“有名”的IT技术名词,没有之一。从春运大数据到两会大数据,从IT技术人员到企业高管,从国家到个人,短短数年间,大数据就变成“街知巷闻”的热门词汇,充分说明了大数据在移动互联时代的重要性。
分析机构IDC预测,到2020年,将有2000亿台智能设备,连接至互联网,包括手机、电脑和平板电脑,以及如温度监控和网络摄像机等设备,人类所产生的数据量将超过40 ZB(泽字节),这意味着全球的数据每两年就将翻一番。同时IDC认为,从现在到2020年的大部分数据并不是由人类产生的,而是由机器,包括机器传感器以及与其他具备通信功能的智能设备,这些数据中的33%包含有价值的信息。
“一个物体要往前移动,第一要有动力,第二要克服摩擦力。大数据应用,也是一样的。今天的大数据不缺动力,因为数据的价值已经人尽皆知。所以,我们的大数据应用,需要好好研究的是怎么能够降低大数据应用的摩擦力,这个摩擦力就是应用门槛,需要让客户把大数据跑起来并且跑出有效的结果。”张东对大数据的趋势有着如是判断。
大数据的价值在于“加工”
对于用户来说,信息不再昂贵,从海量数据中获取价值变得昂贵。据统计,目前大数据所形成的市场规模在51亿美元左右,而到2017年预计会快速增长至530亿美元。
“从数据中获取价值不是需要某种技术手段,而是需要一种解决业务需求的方法,这套方法能够通过行之有效的技术手段来处理大数据的大容量、多类型和快速率这一系列问题。”浪潮云和大数据事业部副总经理李忠旭持有上述看法。
在李忠旭看来,“云计算改变了原来的资源组织方式,大数据改变了业务创新方向”,云计算资源池化的管理模式是大数据应用的前提,能够动态支撑大数据分析业务不断变化的需求。“大数据分析必然是软硬一体,就像微软能够把软件的性能优化,必然对硬件上有所要求。”
浪潮大数据:专注+合作
基于对大数据发展趋势的认知,浪潮将“专注+合作”确立为大数据战略的两个关键词,将专注于提供大数据基础架构平台型产品,专注在行业大数据应用领域。同时通过与ISV的深度合作,开发行业定制化解决方案的开发,提供软硬一体化的解决方案。
“首先应用开发和大数据系统软件,留给我们的合作伙伴进行这方面的研发,无论是数据架构还是应用架构的设计,而我们希望对底层平台优化上做的多一些。整体设计和系统交付我们做一部分,合作伙伴做一部分,由不同行业开发商做整个的交付。”这是李忠旭对浪潮大数据业务的具体设想。
浪潮与合作伙伴最终呈现给用户的,将是包含产品、咨询与交付一体化的“交钥匙工程”,包括业务应用开发、大数据系统软件、基础硬件平台的基础架构服务,应用架构设计、数据架构设计、硬件架构设计的咨询服务,以及性能调优、一体化设计和系统交付的交付服务。
值得一提的,浪潮对行业大数据的“一见钟情”事实上已逐渐显示出早有先见之明。来自大数据专家委员会的靳小龙分享的140位大数据专家调查结果显示,跨学科领域交叉的数据融合分析与应用,将成为今后大数据分析应用发展的重大趋势。他指出,“由于现有的大数据平台易用性差,而垂直应用行业的数据分析又涉及到领域专家知识和领域建模,目前在大数据行业分析应用与通用的大数据技术之间存在很大的鸿沟,迫切需要进行跨学科和跨领域的大数据技术和应用研究,促进和推动大数据在典型和重大行业中的应用和落地。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01