
大数据点亮“航标” 迎接“大”时代
在6月17日~18日中国科学院学部主办的“空间地球大数据”科学与技术前沿论坛上,中科院院士、中科院遥感与数字地球研究所所长郭华东作出上述表述。在他看来,大数据正在开启一次重大的时代转型,它将改变人类的生活及理解世界的方式。
大数据:工业时代的石油资源
2014年4月,国际数据公司发布了第七份“数字宇宙”报告,称全球数据总量将以每两年翻一倍的速度持续增长,这意味着从2013年到2020年,全世界的数据量将会增长10倍。
随着计算机技术和网络技术的快速发展,半结构化、非结构化数据大量涌现,数据的产生已不受时间和空间的限制。世界各国政府都在推出各种强有力的政策,推动大数据研究与发展。与此同时,中国所拥有的数据在国际上的位置越来越靠前。据统计,截至2012年,全球数据分布比例为美国32%,西欧19%,中国13%,而预计到2020年,中国将产生全球21%的数据。
大数据时代已经到来。“数据是资源,数据是财富。大数据是知识经济时代的战略高地,是国家和人类的新型战略资源。”郭华东说,作为知识发现的新模式,科学大数据已成为继实验、理论和计算模式之后的数据密集型科学范式的典型代表,正在带来科研方法论的创新。
照亮“一带一路”
本次“空间地球大数据”科学与技术前沿论坛吸引了来自全国40多家单位的80余名院士、专家参会,来自空间对地观测、地理、地质、大气、海洋、地球物理、地球化学、空间物理、计算机科学等不同领域的专家展开了热烈讨论。
在中科院院士、中科院地学部副主任傅伯杰看来,此次论坛通过探讨空间地球大数据对推动地球科学的发展,从战略高度对我国空间大数据的重大关键技术与前沿科学问题开展研究和讨论,具有非常重要、现实的意义。“我们期望通过研讨,凝练符合我国数字地球发展需求的前沿科技问题和重大战略研究方向,进一步推动数字地球在我国和全球的发展。”
3月28日,国家发展改革委、外交部等多个部门联合发布了《推动共建丝绸之路经济带和21世纪海上丝绸之路的愿景与行动》。而在此之前,中科院学部完成了《科技助力丝绸之路经济带建设》咨询报告,其中就提出了“打造中国—中亚空间信息通讯技术合作高地”的倡议。
这样的形势让郭华东察觉到难能可贵的机会。“记得是1999年,一个记者问我到底什么是数字地球。我回答数字地球就是把‘地球’装进我们的计算机,当时我心里并不是很清楚。”郭华东说,“现在我才真切地感觉到,数字地球其实就是地球大数据。”
当前,随着空间遥感、导航定位、地球物理等卫星数量和其他平台的不断增加以及观测仪器类型的多样化,空间对地观测大数据正在汇入大数据研究的主流。
对此,郭华东建议面向“一带一路”战略,构建丝绸之路和海上丝绸之路大数据联盟。“我们要以大数据为抓手,为‘一带一路’注入可操作、可凝聚、能引领的方向,形成出钱的基金会—出思想的科学家—出成果的大数据基础设施等各方联动大格局,让大数据成为‘一带一路’建设的一个引擎,成为各国共建‘一带一路’的和平使者,让大数据科学之光普照‘一带一路’的现在和未来。”
挑战仍存
之前,一段关于苹果手机记录用户行踪的新闻甚嚣尘上。苹果5S手机能够在后台记载并存储用户何时去过何地、停留时间等信息,还能够分析出用户常去的地点是哪里。
这是大数据时空应用的一个典型案例。中科院院士杨元喜说,大数据中80%以上的信息都与时间和空间有关,也因此,大数据的计算、统计、分析和知识挖掘必须基于全球统一的时间基准和空间基准,否则“信息和知识的动态性、规律性、可用性、可靠性等都会成问题”。
时间就是金钱,曾有人作过粗略测算,倘若美国GPS系统在特定的时刻差1秒钟,美国大概可以赚中国7400万美元的债务利息。
我国也在不同时期建立了不同的空间基准,基本满足了当时国民经济和国防建设急需。譬如2006年,我国建立了北斗时,北斗时与国际协调时的时差在100纳秒以内,但在杨元喜看来,北斗时的精度和稳定度与国际先进水平仍存在较大差距。
而我国现有空间基准为“中国2000大地坐标系”基本满足了航天、航空、航海事业需求,也可以满足粗放大数据应用,但也难以完全满足精细大数据应用开发和高速载体数据决策需求。
“我国初步建立了独立的时间系统,但在大数据时代,现有的时间和空间基准尚不能完全适应大数据分析的需求,需要进一步完善。”杨元喜呼吁,“大数据时代呼唤高精度全球统一的时空基准,建立与大数据时代相吻合、全球统一、无缝发播的时空基准,我们仍然面临艰巨的任务。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20