
如何对考试成绩进行数据分析(1)-数据分析师考试
一、原始分和标准分的定义
原始分是考试后直接从卷面上得到的分数。
标准分是指通过原始分转化而得到的一种地位量数,它反映考生成绩在全体考生成绩中的位置。因此,无论试题难或易,无论整体原始分偏高或偏低,整体标准分都没有什么变化。
二、标准分的计算
根据教育统计学的原理,标准分Z是原始分与平均分的离差以标准差为单位的分数,用公式表示为:Z=(X-A)/S
其中:X为该次考试中考生个人所得的原始分;A为该次考试中全体考生的平均分;S为该次考试分数的标准差。通过转换后得到的标准分Z在一般情况下都带小数,而且会出现负值,实际使用时不太方便,所以还要对Z分数进行线性变换(T变换): T=500+100Z
这就是我们通常所说的标准分。这种标准分的平均值为500,也就是说,如果某考生的标准分为500,则该生的成绩处于此次考试的中间位置。标准分有如下性质:
⑴平均值为0,标准差为1;
⑵分数之间等距,可以作加减运算;
⑶原始分转换为标准分是线性转换,不会改变原始分的分布形状,也不改变原来分数的位置次序。三、使用标准分比使用原始分有什么好处?
根据教育统计学的原理,原始分转换成标准分的意义可以从下面的比较中反映出来:
⑴单个标准分能够反映考生成绩在全体考生成绩中的位置,而单个原始分则不能。
例如,某考生某科的原始成绩为85分,无法说明其这科成绩究竟如何,因为这与试题的难度有关,与总体考生的分数有关。如果某考生某科的标准分为650,即Z分数为1.5,则通过查正态分布表,查得对应的百分比为0.9332,于是我们知道,该考生的成绩超过了93.32%的考生的成绩,这就是分数解释的标准化。⑵不同学科的原始分不可比,而不同学科的标准分是可比的。
不同的学科,由于试题的难易程度不同,各学科的分数价值也就不同。例如某考生的语文原始成绩为80分,数学原始成绩为70分,从原始分看,其语文成绩优于数学成绩。但如果这次考试全体考生的语文原始分平均为86分,而数学原始分平均为60分,则该考生的语文成绩处于全体考生的平均水平之下,而数学成绩处于全体考生的平均水平之上,即该生的数学成绩实质上优于语文成绩。从标准分的角度来衡量,其语文标准分小于500分,而数学标准分大于500分。由于标准分代表了原始分在整体原始分中的位置,因此是可比的。⑶不同学科的原始分不可加,而不同学科的标准分之间具有可加性。
既然不同学科的原始分不可比,那么也就不可加。多学科成绩,只有在各科成绩的平均值相同、标准差也相同的条件下,才能相加,否则是不科学的。各学科原始分的平均值以及标准差一般都不相同,而各学科的标准分的平均值以及标准差都基本相同,因此,各科的标准分是可加的。
四、什么是增值?
教学增值就是评价时将学生原有基础一并考虑,用以比较原有基础与接受教师教育后成绩增进的幅度。增值评价分为两步:首先根据原有基础得到一个输入值;然后根据教育后的成绩得出一个输出值。输出值与输入值之间的差就是增值,用公式表现就是:增值=输出值-输入值
教学增值评价法是一种借助计算机系统和统计程序。对教师的教学效果(即教师对学生学业成绩的影响程度)做出判断的教师评价方法。
一个教师的教学总会有一定的效果.对学生成绩总会产生的影响,但这种影响范围可大可小,可正可负,而教学增值评价就是将这种影响进行量化,进而遴选积极影响、转化消极影响、促成有效教学、扩大受益群体。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15