京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据背景下的中国征信体系如何发展_数据分析师
互联网金融的发展需要以信用为基础,征信的发展和完善将为互联网金融的健康发展提供有力保障。征信是以数据为基础,对其进行的采集、整理、加工以及使用。大数据不仅可以为征信体系的建设提供丰富的有效数据,也可以从根本上改变传统征信产品的设计理念,间接助推互联网金融发展。
目前征信体系比较完善的国家和地区主要有美国、欧洲和日本,且其征信模式各不相同:
1.美国征信体系最大的特点是市场化。在美国,Equifax、Experian和TransUnion三家征信公司“三足鼎立”,分别拥有覆盖全美的数据库,其中包含超过1.7亿消费者的信用记录。这些海量的个人征信数据经过FICO的计算方法模型形成征信产品——信用分析报告和325-900分值区间的评分。
2.欧洲征信体系最大的特点是由政府主导。大多数的欧盟成员国,如德国、意大利、西班牙等,都采用以央行建立的中央信贷登记系统为主体的社会信用管理模式。所有银行统一接口,依法强制向央行信用信息局提供其所有的征信数据,由央行搭建全国性的数据库。
3.日本征信体系最大的特点是会员制。包括银行、信用卡公司、金融机构、企业、商店等机构都是信用信息中心的会员,通过内部共享机制实现中心和会员之间的征信信息互换。会员有义务向中心提供客户个人征信数据,中心也仅限于向会员提供征信查询服务。
我国征信业发展尚处于起步阶段,围绕征信体系建设的法律法规、业务规则以及数据处理模式及方法都需要完善和加强。截至目前,在征信领域中国和欧洲类似,央行征信系统一家独大。但是,在中国,虽然央行手握庞大的数据库,其存在以下几个问题一直为人诟病:
1.封闭。互联网金融的快速发展并没有得到央行任何实质性的支持,央行所把持的征信大数据并没有助力中国互联网金融的发展。征信领域的缺陷也使得中国互联网金融的发展并非一帆风顺,特别在P2P领域,跑路现象非常严重,给互联网金融的发展带来了很大的负面影响。
2.方便性差,代价高。就个人来说,只能到各地的人民银行查询个人信用数据,且只有两次免费机会;企业的话更难,没有好的公关,很难想像哪家企业可以获得这些数据。
3.数据失真严重。鉴于我国人口流动性强,央行统计的数据覆盖人群以及涉及的维度都有限,很难准确反映人们的日常需求。
大数据催生的征信体系建设可以很好的解决央行征信体系面临的问题,因为其数据覆盖面广,涉及的维度更全面,通过互联网方便快捷的服务全体商家。
首先,大数据必然优化整个征信市场的格局。在现在的市场中,电商已经成为征信体系建设的排头兵。以阿里巴巴和腾讯为例,蚂蚁金融利用阿里巴巴旗下或者持股的淘宝、天猫、支付宝、高德地图、UC浏览器、微博、优酷等收集客户的行为数据和信用情况,建立了涵盖数十万企业以及数亿个人的数据库,其征信体系的模型令人期待;腾讯也一样,基于帮助金融机构提高风险管理水平以及助推普惠金融的理念,腾讯财付通团队从设计、应用、机器学习以及数据建模上,利用腾讯大数据,分析用户行为,向金融机构提供用户信用风险。除了电商,传统金融机构也在积极构建征信体系,如平安集团就想要整合旗下各公司相关的网贷信息、银行信贷信息、车辆违章信息等,建立金融数据挖掘中介机构。此外,互联网金融的发展也催生了很多新型征信机构,一些大数据公司依靠技术手段,以电子商务、社交网络为平台,采集信息,提供信用信息服务。
其次,未来的征信业将以智能数据分析系统为平台,依靠大数据挖掘技术实现转型升级。一方面依托大数据的征信体系可以深度挖掘用户信用信息,防范潜在的信用风险,实现有效的风险控制;另一方面,依托大数据的征信体系可以在数据充分信息化的基础上实现精细化管理。
第三,依托大数据可以实现征信业的差异化竞争。通过采用不同的数据,应用不同的数据处理方法或者模型,开发针对不同市场或者客户的产品,实现差异化竞争。
第四,大数据可以拓展征信数据来源。在大数据的帮助下,征信机构可以实现从之前实体机构,如政府部门、金融机构等,中采集信息向从互联网等虚拟世界中获取信息的转变。因为大数据使得能反映主体信用情况的征信数据来源更加多元化、层次化和非结构化,其相应的深度和广度也随之增加。
与此同时,大数据的发展也将对征信业的监管技术和水平、信息安全和隐私的保护、数据处理的能力以及基础硬件的升级提出更高要求。所以随着大数据时代的到来,未来的征信体系要在制度、技术、信息共享方式以及管理方面不断创新,以促进征信业的发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16