
大数据分析找痛点 针对性服务求实效
积极引入“大数据”分析理念,创新研发应用“纳税人需求管理系统”,打造集税情采集、需求管理、服务反馈、依法维权、质效提升等功能于一体的“纳税人需求响应中心”,通过科技手段,分析、找准纳税人需求和纳税服务中存在的“痛点”,变“端大众菜”为“点特色菜”,有效地打通了服务纳税人的“最先一公里”和“最后一公里”,进一步提升了纳税服务的针对性和有效性,得到了社会各界和广大纳税人的“点赞”。主要做法:
一、运用“大数据”手段,创建纳税人的需求仓库
在纳税服务工作中,无论是税法宣传、咨询辅导,还是各类服务举措,税务机关通常考虑“我想要给你什么”,而非纳税人需要什么;在权益保护方面,通常解决“一个人”的问题而非“一群人”的问题。以往这种服务模式,往往造成了服务资源的浪费,服务实效性和针对性也受到影响。对此,该局积极创新服务理念,运用大数据技术,全面采集纳税人的需求信息,搭建纳税人需求的数据仓库。一方面,关注纳税人通过12366纳税服务热线、办税服务厅、实地走访、稽查办案、风险评估、微信、网上办税厅等平台或渠道,提出的意见建议等“明示”需求;另一方面,注重挖掘其他平台或渠道所反映的“潜在”需求,如充分挖掘和利用12366纳税服务热线、12345政务热线、税收征管系统、办税服务厅公共管理服务系统、微信、网站等平台储存的纳税人行为类数据,全面掌握纳税服务的整体情况、存在问题、纳税人关注的热点难点问题以及纳税人的行为、习惯、偏好等,为全面把握纳税人合理需求奠定了扎实的基础。
二、建立“大分析”机制,把握纳税人的需求热点
以满足纳税人的合理化服务需求为导向,对需求信息进行分类整理,分别建立了意见建议类“明示”需求分析体系和行为偏好类“暗示”需求分析体系。对于“明示”类需求,在需求确认的精准化、紧急程度设置的智能化方面实现了突破,通过实质性需求判断、合理性需求筛选、类别正确性定位等手段,确保需求切实有效;同时根据需求发生频次、重要性权重指数、需求来源等内容,设计需求分析模型,提高分析研判的准确性,确保能够准确筛选纳税人提出的影响面较大的热点难点需求,以便于税务机关及时介入处置。对于“潜在”类需求,结合不同的数据来源,按照热点导向(如纳税咨询热点)、指标导向(如与办税服务厅有关的各类预警指标,办税大厅排队等候时长、单项业务办理时间等)、痕迹导向(纳税人对自助办税平台的使用、浏览情况)的分析原则,深入分析此类数据指标背后的原因,找准纳税服务工作中存在的“痛点”和纳税人关注的“热点”,真正做到了“纳税人所需、税务人所向”。如针对纳税人拨打12366纳税服务热线的频度和提问内容,判断纳税人自主办税能力的强弱,从中找准纳税辅导的重点服务对象,并由系统提供远程服务;针对纳税人咨询问题的类型和集中度,判断纳税人对某类业务问题的关注程度,从中找准后续服务和管理的重点对象;针对经常拨打12366纳税服务热线的纳税人信息,判断其集中的行业、地域和纳税遵从度,找准后期税法宣传的重点,有助于提升纳税服务的针对性。
三、构建“大联动”格局,加速纳税人的需求响应。
纳税人的需求具有多样性,且不同需求满足的方式、时限均存在客观差异。对此,该局分别制定了《纳税服务联动工作机制》、《纳税人诉求快速响应实施办法》和《纳税人需求分类分级管理办法》,明确需求采集(受理)、分析、处置、反馈等各部门、各环节的工作要求,真正做到了将纳税服务镶嵌于税收管理的全员、全岗、全过程。同时,依托纳税人需求管理系统和需求响应中心,对需求的采集、确认、分析、处置、效果评估等进行全程信息化推送,形成了“信息流—任务流—绩效流”的闭环运转,各个流转环节的处置情况全程可追溯,从而助力各岗位有效提升需求响应的效率和效能,促进了纳税人需求与纳税服务工作的深度融合。
截至今年5月底,该局通过纳税人需求管理系统和需求响应中心直接采集的有效“明示”需求1500多条,通过综合分析各类平台和渠道内的50多万条数据,形成告知性需求、便利性需求、政策性需求和权益保障性需求200多条,内容涵盖咨询辅导、办税流程、办税资源配置等多个方面。在此基础上,该局形成了多篇纳税人需求采集分析报告,对纳税人需求的表现形式、产生根源以及税务机关响应反馈等进行深入分析,为优化税收服务和管理提供了有力的参考依据,对有针对性地推进行政审批制度改革、合理布局基层办税厅点、推广多元化缴税、改进税法宣传辅导等工作产生了积极影响。如:针对纳税人优化缴款方式的迫切需求,在基层办税厅点迅速引入Mispos机划卡缴费方式;对多元化办税途径的需求,迅速推广应用自助办税机系统,方便纳税人;针对纳税人加强辅导的需求,突出抓好对创业大学生、小微企业的专题培训,并专门成立为拟上市公司服务的“IPO税援团”,为大众创业、万众创新营造良好的税收环境。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19