
大数据时代 汽车后市场如何实现质变
汽车后市场,这是一个万亿级的市场。中国汽车工业协会1月12日数据,2014年中国汽车产销量均突破2300万辆,同比增长7.26%和6.86%。截至当前,我国汽车保有量已超过1.57亿。2014年,汽车年检政策改革、反垄断、汽车维修数据开放、品牌管理办法的修订实施等政策对后市场起了很大的刺激性作用,2015年汽车后市场各项指数都将上涨。
在政府提出的众多针对汽车后市场的政策中,汽车维修数据的开放成为该行业突破性发展的标志。毕竟,各商家的独立运作能产生的效益以及数据量是非常小的,每个商家都希望与其他商家共享数据,以能够为更多的车主提供服务,数据公开也就尤为重要。
维修数据公开以后,所融合形成的更多维度的大数据能够让整个车后市场形成一个整体,从而打破行业垄断所造成信息不对称壁垒。在大数据基础上,整条产业链上的维修、保养等各环节商家都能更专注与自己所在的行业,所需要的相关数据只要与专门做数据的商家对接即可,这样整个行业就都做轻了。
汽车后市场的竞合时代也就由此开始,大数据行业则在整个行业都处于重要的位置。
汽车后市场服务竞争进入数据竞争时代
移动互联网时代,汽车后市场产业的升级转型的最终落脚点在于整个汽车零配件产业链的各类B2B商家。汽车服务的所有环节都无法脱离线下,互联网能够改变的是预约服务、汽车零部件适配、工时费用结算、网络投保等可以在线上操作的服务项目中的数据部分,剩下的保养、维修、换件、美容、洗车、定损实际操作的业务部分,仍旧是通过上门或者定点进行操作。
从产业链来看,当前中国汽车后服务市场基本可分七个大类:包括养护、维修、改装、二手车、汽车配件、相关电商及金融保险等。这七个大类其实可以再做细分,譬如养护就包括洗车、美容、机油及零件更换等服务。
七大类汽车户服务可以分为汽车服务、车联网相关、及工具社区等三种类型,其中汽车服务类型的服务商家分类最细,这些个细分服务领域都诞生了很多优秀项目。当前而言,汽车服务类的众多商家正在由重向轻变化,开始由产业链低层向中间层过度,做“服务汽车服务商的”服务商。这一类商家无论是做平台的还是做垂直服务的,在信息化方面都在向“大数据”过渡。
因为商家们发现汽车后市场服务中的竞争不在于维修人员的多少,更需要的是对原厂配件、品牌配件、工时、维修信息等数据的适配,谁的数据最多、最全、最详细,谁就最有竞争力,这意味着能够给予全品牌全车型服务数据匹配。举个例子,比如机油滤清器(简称机滤)需要与上门的客户车型匹配,可原厂机滤很贵,一般的oto公司都使用曼牌的,那曼牌的哪款机滤适合这个客户的车型呢?这就需要用数据库来做匹配支持,汽车后市场配件服务数据是必不可少的。
在数据获取上,有数据积累的商家可以通过更多的渠道获得信息,没有积累的则会与专业的数据库企业进行合作。整个产业链对大数据服务都有重度需求,配件通赔数据最终是要融入汽车后市场产业链的所有环节的。以此,汽车服务竞争进入了数据竞争时代。
汽车后市场服务离不开通配数据
大数据能带给行业更多的在于商家对于客户以及业务的管理,这些数据具体到汽车后市场,则是对汽车后市场服务商家在沟通用户以及商业营销的综合性管理。
尤其是车型、配件、品牌、保养等数据的灵活调取与应用方面,可以让商家近距离接触车主。甚至不用询问就能了解车主用车信息,可以进一步为车主提供一站式汽车服务方案。
所以,汽车后市场大数据尤其是配件通配数据,对于当前这个领域的商家来说是至关重要的,利用大数据来适配车后服务,是整个行业在服务模式的质变。
那么,汽车后市场需要那些数据呢?通过与正时汽车交流得知,一个合格的数据服务提供商,应该为做到以下几点:
全品牌全车型全配件的数据信息。要有基于VIN的全车型全配件的通配架构,
配件数据库包括:VIN码识别库、车型配置库、保养规则库、配件原厂件号品牌件号通配数据库等。
与国外同步的数据库关联结构。
即时同步国外零部件供应商的信息,能够保证最新车型的零部件填充数据库。
互联网化的API数据服务。
保证每一个与其合作的商家,都能通过API接口对接到并调取所需的数据库信息。
至少5年以上的数据库制作经验。
整个汽车后市场对数据的需求越来越大,同时也正在产生更大量的数据,数据处理经验以及数据库制作经验尤为重要。
老生常谈的数据维护。
从全品牌到全车款,海量的数据挖掘与匹配,没有一个足够强大的运营团队是不行的,正时汽车的团队已经超过的100人。
以正时汽车为例说说大数据模式对于行业的一些价值
DT时代,车辆上传的每一组数据都带有位置信息和时间,并且容易形成海量数据。
在大数据平台上,基于对车辆数据、道路数据、环境感知数据等海量信息的处理、分析、汇总,汽车服务商或整车厂商可获得相关车主的车况、驾驶行为、里程等行车、用车过程中的数据,从而可基于大数据挖掘对车主进行精细化的管理。
以上所讲的是广义上大数据对汽车后市场行业的影响,体现在到车后服务方面,大数据确实能够解决很多问题。具体而言,大数据模式对于该行业的一些价值可以表现为以下几点。
首先,促进产业链配件交易的效率。
目前,B2B配件交易通过电话询问的发单准确度不足50%,前文所述几大数据库是保证交易信息的准确性的基础,网络交易可以为商家及车主提供更详尽的配件信息,重复换货频次降低。
其次,多种选择为商家带来价格优势。
数据库不只是为商家提供原厂配件信息,同时也提供其他品牌的可替换配件,车主可以根据情况选择合适的配件,同时这也是品牌商家的一个销售渠道。
再者,改变了了传统的咨询方式。
将传统汽配行业1对1电话询件询价方式,提升为1对多的数字化询价方式,极大的提高了商家与车主、商家与配件商的沟通效率。
同时,提供了交易配件的追溯源头可行性。
正时数据库对配件厂商、配件分销商、配件连锁分销商、汽车保养商、配件B2B电商平台及O2O服务平台都有清楚的记录,并能够逆向查询,这样配件以及服务出现问题之后,便可以逆向找到交易源头,解决了汽车后市场服务的透明化与公正性的问题,无需再用第三方监督。
还有,符合国家提倡的“同质配件”战略。
当前,中国汽车维修行业协会正在大力推广“同质配件”行动,以推进汽车维修行业健康发展。同质配件也就是“质量相当配件”,具体到汽车零配件上也就是可以替换原厂配件的零配件替代品,价格更低同时性价比更高。这个政策可以增强民族制造业积极性,并能够降低消费者维护成本。
在行业影响方面,除了以上几点,汽车后市场之所以能够出现专业大数据服务提供商,也是市场的需求,大数据专业化,能够与产业链上做其他服务的商家进行协作,这样强强联合发挥各自优势,对于整个产业的进步是有益的。
同时,在“互联网+传统”行业方面,大数据融入传统企业的CRM系统并倒逼传统企业升级转型,是“互联网+”落到实处的一个重要的途径。
总而言之,大数据将会为整个汽车后市场行业的进步提供更有利的基础。同时,无人驾驶、车联网、智慧交通及工业4.0等也将受益其中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16