
「海量资料」会红也不是没有塬因的,Facebook每天跟你说「你可能认识的朋友…」、购物网站告诉你「买了这个东西的人也买了….」或显示地方的妈妈们需要什么等等,背后都有海量资料在解算,来自以色列的研究团队还用海量资料来对抗癌症呢!
现代人罹癌的风险高,却苦无有效的疗方。现行的治疗方法,不论是传统化疗、放射性治疗或是靶标药物,都如七伤拳一般,伤敌一千、自损八百,即便消灭了癌症,身体也难以回到塬本的健康状态。如何只杀死癌细胞而不影响身体的正常细胞,仍然是个梦想。一个以色列团队的最新研究,把这个梦想往现实拉近了一大步,研究成果发表在生物学界知名的期刊《Cell》上,有趣的是,主要的研究人员都跨足了资讯工程的领域,因为他们用来对抗癌细胞的工具是「海量资料」的分析技术。
此研究利用一种被称为「合成致死」(Synthetic lethalit)的基因对,意指一对相对应的基因,若二者同时处于去活化状态(inactive),则细胞就无法存活。但只要其中一个基因是活化状态(active)[注],即便另一个去活化,细胞仍为正常存活。很像我们苏花公路的双向单线路段,若一线道封闭,管制一下还是可以通车,双向皆封,路就不通了。
(奇怪的是科学家怎么会把一个专业名词取做「合成致死」这种像二流科幻片的字眼呢?取做「二枪毙命」如何?至少可以从二流的科幻片变成不错的动作喜剧片。)
由于癌症与先天的基因缺陷或后天的基因突变有很大的关联,往往可在癌症细胞内发现去活化的基因,相同的基因在正常细胞内则处于活化状态,此时若以药物手段抑制该基因的「合成致死」配对,就可达到只杀死癌细胞而不影响正常细胞的疗效。
人类的基因组多达20000~25000组,加上基因活化/去活化的变数,产生更多的排列组合可能,来自各个实验及临床的数据形成了「海量资料」,要如何从这「海量资料」中分析出合成致死的基因对,就是本研究的主要课题。
如果二个基因是「合成致死」对,同时处于去活化状态,那么携带这对基因的细胞就已被「致死」了,相关的数据不会被纳入这个海量资料库内,所以研究团队采取反向的操作:首先,在细胞内同时去活化的基因们,彼此间一定不是合成致死对,可以将之排除;再来,研究团队比对暨有的shRNA资料库(shRNA 会抑制基因活化),可做进一步的筛选;最后,利用合成致死基因对的另一个特性:当他们处处活化状态时,常常会同时进行产出蛋白质的动作,称做基因共表现(coexpression),研究人员得以找出合成致死基因对的候选人。
这些以数据分析找到的合成致死基因对与已知的合成致死基因比对,有高度的相符。
一位关键的研究人员在酒醉后接受访问时表示:「塬本我想找到我跟老婆吵架的塬因,因此将会让她生气的行为当作资料库进行分析。这个研究后来失败了,因为会让老婆生气的变因太多,而且还是时间的函数。不过当时开发的软体,意外地适用于分析合成致死基因对的资料库。」(误)
研究团队同时指出,某些用于治疗其他疾病的药物,其实有抑制部份基因活化的作用,若该基因与癌细胞内的去活化基因为合成致命组,那么这些药就有用于治疗癌症的可能。
这个研究成果也开发出一片「旧药新用」的蓝海!(旧药已通过临床测试,所以发现旧药物的新用途比之开发新的药物,节省了许多成本。)
[注]:活化的基因代表会有「基因表现」(gene expression)。而基因表现的解释为基因中的DNA序列生产出蛋白质的过程。步骤大致从DNA转录成mRNA开始,一直到对于蛋白质进行后转译修饰为止。
基因的表现,首先需要将遗传资讯从DNA上转录至信使RNA,然后再通过转运RNA转译成蛋白质。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07