
为什么数据分析师要用产品思维
数据分析这词汇时髦的不得了,然而就像这些年所炒的各种概念一样,当冷静下来,请很多人解释数据分析到底是什么时,恐怕要有一个不错的答案很难。
比较常见的答案是:数据分析就是分析数据。那么怎么分析,分析什么呢?显然这个答案没有回答实际的问题。然而,正是这种含糊其词的状况,笼罩在业内,尤其是互联网行业的数据分析领域。似乎数据分析的诉求不断的提升,但究竟分析什么,用什么分析,分析的结果如何应用,不要说想清楚,恐怕连想都没想过。
在我看来,数据分析不是一项工作,尤其不是从后台取个数据,做个图表的工作,而是一个产品,能够满足某种实际工作需要的产品。比如数据指数系统,用来指导运营工作,让运营的同仁能够基于指数来评估自身工作的增益或者不足,进一步通过数据钻取来了解指数增加或减少的原因。好吧,这还是有点拗口。举个第三方的例 子:电视是一个让用户休闲的产品,把数据分析想象成电视吧。
数据分析中,窃以为最重要的事情,就是明确数据分析的目的是什么,就像上面电视 的例子一样,要明确电视用来干什么,别诧异,玩游戏,看电影,看球赛,看肥皂剧,唱KTV等等的用法都会使电视有所不同。因此,数据分析的目的决定了不同 的方式方法,出发点永远是如何指导工作,无论是最基础的了解现状及趋势,还是机器自动学习的算法改进,永远如此。
说到这,数据分析这个“产品”会有什么用处呢?太多了,多到让人太容易迷 失,数据会让人的野心暴涨,看到了指标A,会想着指标B,了解了这些,又希望钻取,这满满无期,虽然也有价值,但是投入产出非常不合理。因此,数据分析这 个产品,给用户的应该是“知识”,在没有转换成知识之前,所有的数据都是无价值的。我突然告诉你今天华氏105度,你觉得有价值么?
说到知识,最好的转换方式无非是6个字:图形、对比、钻取。一图胜千言,指标增长还是减少,与自己对比,与控制组对比。当发现这些变化时,进入维度中观看不同的水平,是哪种水平导致了这些变化。其实非常简单,简单到比培训什么同比、环比、均值、众数、方差、高斯分布、ANOVA、非参数统计、因子扭矩还带个旋 转、贝叶斯分布等等等等简单的多。
一定要目标导向,而不是工具导向。后者很可怕,我曾经遇到过一位同学,他很happy的告诉我他要用SAS,我问为啥,答案是可以编程。我说好吧,心想真有米,要多么复杂的模型啊,实际上这复杂的模型就是描述统计量的计算。忘记工具、忘记模型,用目标来指引工作,假设要转化的知识是给的哪些用户,他们的业务场景假设是什么,是需要看数据来评估绩效,还是需要数据来改进工作等等。然后把知识告诉他,这就完 了。如果说真要让我推荐个什么工具,我说SQL\python\R\SPSS\Excel随便挑一个都行,如果不行,随时来找我。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05