
大数据时代我们最需要什么样的人才
当今世界,正在从数据时代走向大数据时代。今年两会,“大数据”第一次出现在政府工作报告中,这表明,我们对大数据重要性的认识上升到国家层面。
与互联网的出现一样,大数据带来的不仅是信息技术领域的革命,它正在改变着人们的生活以及我们理解世界的方式,并成为更多新发明、新服务的重要源泉。
大数据时代到来,将给中国人才队伍带来哪些机会?提出什么样的挑战?谁将是未来最热门的人才?让我们一起来看看吧——
“人人皆可成才”将成现实
记者:大数据到底有什么用?
吴江:大数据最重要的功能,是能把未来一些不确定性的东西准确地预测出来。举个例子——2008年,谷歌的一支研发团队利用在网上收集到的海量个人搜索词汇数据,赶在政府流行病学家之前两星期预测了甲型H1N1流感的暴发。这样的事情在以前是不可想象的,掌握了大数据后,谷歌就做到了。
大数据浪潮,让人类在历史上第一次有机会用数据围绕一个东西形成完整的描述。凭借日益增强的数据分析能力,人类得以有效实现对未来的预测。大数据可以帮助人们提升对整个社会的管理水平,对于人才管理领域来说,更是迎来了一个得以迈上新台阶的大好时机。
记者:大数据对人才工作带来最直接的影响是什么?
吴江:小数据时代,数据掌握在精英手里;大数据时代,数据掌握在老百姓手里。大数据的公开透明,可以推动社会变革发展,更大意义在于,人人可以通过分析大数据,对自己的未来作出理性抉择。数据时代,“人人皆可成才”,将从理念走向现实。
“新一轮人才流失”要避免
记者:大数据对全球产业带来哪些影响?
吴江:与互联网的出现一样,大数据不仅是信息技术领域的一场革命,它将在全球范围内启动透明政府、加速企业创新、引领社会变革。
一家名为“埃森哲”的管理咨询公司去年调查了600家英美公司发现,33%的受访企业表示正在整个企业范围内积极使用大数据。68%的企业认为,企业自身的高管团队作为一个整体,能够参与和支持数据分析法的部署,并基于事实情况作出决策。有三分之二的公司在之前18个月任命了负责数据管理和分析工作的高管,其他企业中的71%准备任命此类高管。
美国通用电气公司就较早地意识到了大数据这个难得的机遇,并采取了行动。通用电气正启动在旧金山湾区投资15亿美元,建立一个全球软件和分析中心,拟雇用至少400名数据科学家,现在已经有180名各就其位。
“埃森哲”去年开展的一项调查,研究了美国、中国、印度、英国、日本、巴西和新加坡对数据分析人才的需求发现,到2015年,除中国之外都面临胜任数据分析科学家的净短缺。中国还似乎出现了少量的过剩。
记者:为什么只有中国没有出现短缺?
吴江:因为需求不足。有需求,才有紧迫感。我们的政府和企业都还没有关注到这个问题。我们的企业真的不需要大数据人才吗?当然不是,只是我们还没有意识到问题的严重性。大数据时代求发展,企业、政府首先要明确大数据高管的岗位设置,没有岗位我们怎么能留得住人才,抢人才更是谈不上。
另据“埃森哲”公布的数据,美国新增数据分析高管职位的数量将占全世界的44%,但美国只能提供23%,将会有3.2万人的人才缺口。不足的部分怎么办?美国必然会从全世界范围内网罗。正如表面上看中国目前这类人才还有富余,新一轮人才流失的危险恐怕难以避免。但中国如果再继续向美国输送这类人才的话,在大数据时代的国际竞争中将落伍。
我认为,从中央到地方必须重视大数据人才队伍的建设,从基础抓起,完善岗位设置,在培养、留住人才的同时,更要积极面向全球吸引相关人才。
“首席信息官”亟待设立
记者:大数据时代的中国,最需要什么样的人才?
吴江:现在有一种错觉,一提大数据时代,就认为我们最需要数据技术人才,比如计算机人才和数学工程人才。
我们确实很需要数据技术人才,但真正能够帮助政府和企业转变思维、应对大数据挑战的人才不是一个来自IT部门的技术专家,而是政府和企业的高层管理者。我认为,对目前的中国来说,对大数据管理人才需求的迫切性要超越对技术人才需求的迫切性。
政府和企业的领导者,也要有意识地转变思维方式,学习用数据思考、说话和管理。在这个飞速变化的社会中,过去的经验甚至可能成为现在的束缚。比如,我们常常听到管理者抱怨“90后”员工难管,就是因为过往的激励方式对他们不奏效。这一点还体现在走出国门的中国企业里。很多人发现与自己的上司、同事和下属沟通不畅,因为各自是在不同文化中成长起来的。管理者需要不断更新自己的数据库,学会用大数据的方法,随时去找到合适的解决方案。
记者:组建大数据管理人才队伍,该从何处切入?
吴江:首先要设立专门的数据管理岗位,进入决策层,推动各单位迎接大数据时代到来。我已连续几次提交《关于建立政府首席信息官制度的提案》,建议借鉴国际通行做法,在各级政府及其所属部门组建首席信息官办公室,负责人为首席信息官,直接向政府或部门行政首长负责。他们的职位必须是矩阵式结构,在中央有专门领导机构,推动形成国家级的数据库和数据平台,人员要定期交流,以便全方位掌握数据,消除信息孤岛。
政府首席信息官制度的立足点,在于为国家整体服务,切忌为某家单位粉饰太平。今年我再次提交了这方面内容的提案,这个问题必须引起高度关注。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16