京公网安备 11010802034615号
经营许可证编号:京B2-20210330
从2011年开始我一直都去美国一个很重要的会议(strata大会),他们最重要的话是:数据要用出来。我就在想,为什么中国不能也有一个。
在没有Data之前,我把所有的资料翻出来,从2011—2013英文里面排了一个序,最重要的是第一年,在2011年的大部分是讲大数据,有人说这个是大数据,有人说那个是大数据。到了2012年的时候大家都在尝试用大数据,但今年很奇怪,今年我们去美国的大数据的时候,你会发现大部分人已经开始停止讲大这个词,而是创造了一个词叫Dada,这个词是非常有意思的,我们把数据工程化,里面必须要有一个标准要出现,而且在有标准要出现之后,还有一些楼层要出现。那么Data我自己的想法是什么呢?我没有跟马总沟通过,我们这个Data要泛化更多的人要用,更多的人去用上数据,就好象20年前我们让每一个人用上科技,那今天的数据就是要给更多的人用。
其实今天我们已经进入了一个拐点,我特别没有把这个英文翻译的原因。我们所讲的是,现在我们拥有很大量的数据,我们以前要注意一个决定,可能要花很多的钱去投进去要细想,但是今天我们拥有一些大数据的时候,我们以前一些非常难做的决策,相对来说今天很容易做到,其实也是一个很重要的拐点。这个就是当我们能使用数据去去判断去一个问题的时候,我们就用数据化解决问题。
这个是PPT我下午在用,我很快过一下重点。我们从4个V的年代,可实时性、可解释性、数据准确性稳定性。但是今年我去美国我说数据要准确可解释,你知道我们数据挖掘的人最喜欢说这个东西可解释的,不能出来不可解释的,另外一个是可能落地的可以实施的。这三个纬度是我们现在到底数据能不能用上很重要的三个纬度。
我们现在整个数据里面的问题是什么呢?整个数据的问题是,猎物的人不知道数据怎么用?我想用但是不知道数据在哪里。做数据的人不知道别人怎么用。所以里面是有一个很大的障碍在中间的,所以这是我们在数据的一个现象。
两个循环,其实昨天皮特是一个行外人,他不知道大数据是怎么用?程杰当时说,他的看法是如果今天我们有很多的大数据,我们不是认为有一个问题说要找数据来解决一个问题,而是我们运营数据,我们搜集很多数据的数据可以帮我们解决很多未来的问题,这个才叫大数据。程杰要补充的话可以等一下再讲一下他的见解。所以我们过去来讲阿里做了两个循环,一个循环是在怎么用数据,一个循环在下面是说我们怎样养数据,怎么改善数据,两个循环不断的走动,所以我们在两个循环里面不断的进步,所以数据是练出来的。
三年前进去阿里的时候,我们说从看到用,我们不仅仅数据用来看的,而且要用。但是今天走到一个地方是不仅仅让你用,而且让别人用。这一次的圈,当我们要做让别人用的时候,第二个圈就比以前那个圈更困难了,更注重精准性。
我们整个数据运营来讲,会发现从整个运营里面产生了一些价值,同时,我们整个东西里面我们找出很多新的数据跟新的工具,等一下去讲小微金融副总裁孙权,我们最近就在解决这些问题,数据的出生,人才的不匹配、数据冗余、工具不统一,安全、质量,这些都是我们做数据必须保障的,否则就不容易产生数据的价值。
PPT,这是我会下面才讲的,我想跳到最后今天我要跟大家分享的部分。
其实两年前,我是写了一个数据实践,是讲到我们在做数据的时候要关注的几个问题,我改动了一下。两年前我是这样写的,关于数据的实践我说,一切从问题开始,从实践中提炼数据,让数据的体验变得超级简单,让数据跟着人走,然后颠覆性来自分类跟重组等等,但是我具体觉得,现在在两年后,会改变一下。所以数据质量不敢保证是不敢用的,另外大安全不是监管,监管不了的。因为大数据本身有太大,你需要更多的人来用,但是用监控的方法来监管一个大数据,没有办法监管起来。利用数据拿到更有用的数据这个很重要,以后建立数据的数据才有进步,因为我们拼命的做很多模板,但是既然是没有去保证今天的模板的数据质量,今天的大数据做得好,如果连衡量自己大数据做得好不好都不知道?我们怎么继续做好大数据呢?所以我们要建立数据的数据才有进步。最后有一点很重要的是,我们要让人做人擅长做的事,机器做机器擅长的事。千万不要倒过来,人做了机器擅长的事,以及机器做了人擅长的事,这样效率就会降低。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28