
“2014绿公司年会”于4月20日-22日在广西南宁举行。上图为阿里巴巴集团CTO王坚。
新浪财经讯 2014中国绿公司年会“改变的年代:现实与远见”于20日至22日在广西南宁举行。阿里巴巴集团CTO王坚在“大数据”变革企业经营与管理圆桌论坛上,暗讽苏宁不懂电子商务。
王坚表示,阿里巴巴对大数据时代的了解还是原始的,另外一个角度讲,不会超过苏宁对电子商务的理解。王坚称,应该尊重苏宁集团,但苏宁对电子商务的理解的确不够。
王坚还表示:淘宝最大贡献是掌握消费者数据。阿里巴巴实际上是一家数据公司,而淘宝最大的贡献不是让人来买东西,而是将消费者习惯摸清。消费者的习惯就是数据。企业的成功之处在于如何将数据变成财富,阿里巴巴的小额贷款是最能体现互联网数据价值的。
以下为王坚发言实录。
王坚:做大数据以前,对企业的影响可能还要追溯到互联网对企业的影响。要讲清楚,让大家理解大数据对企业的理解,有三件事情可能少不了。
一个就是互联网。互联网很热门的词就是云计算,就是大数据。原因非常简单,互联网公司一定是一家数据公司。阿里巴巴在2008年的时候开过一次会,突然发现我们不是电子商务公司,是数据公司,对公司有非常非常大的影响。
第二个事情对企业有非常大的影响,当自己发现是数据公司时,突然发现少了一个东西,少了把数据变成财富的东西,靠什么呢?就是靠云计算,必须用最低的成本从数据里面得到价值,才能活下去,所以大家设想一下,如果不能用最低的成本得到价值,是活不下去的,这是最基本的。
第二个明白了事情就是计算一定要变成公共服务,2008年开始,对我们企业来讲,用另外的角度来表达阿里巴巴,我们曾经讲过几句话,不上淘宝的人可能不太有体会,淘宝对中国社会最大的贡献不是让大家上去买东西,对社会最大的贡献是消费者的习惯在我们自己企业手里。消费者的习惯就是数据,这是倒过来看的。有时马云也会讲,公司是拿数据去卖东西的,阿里巴巴这家公司卖东西是为了数据,这是一个最基本的不一样的地方,也是我们慢慢过来的。
阿里巴巴做的小额贷款的事情,最最体现了数据的价值,或者互联网数据,我先不说大数据。互联网数据的价值,过去要说贷款的话,银行最重要的是调查信用,要抵押,就这两个事。调查信用是传统的来看数据的方法,也可以讲这是数据,但是是传统的,为什么?它跟互联网无关。
我们怎么用数据来变成一个企业的信用呢?用过去它在我们平台上沉淀下来的数据,不是我们去收集的数据,是沉淀下来的数据,这些数据过去是没有用的,但是因为我们把它变成模型,变成信用以后,就变成这家小企业的财富,才会使我们由300多个员工给70万人做贷款,这是数据的效用跟价值。
倒过来,对我们的组织结构的冲击是很大的,过去用这样的方法做事情,今天会想用另外的方法做事情,对我们的组织结构的冲击也是很大的。
我想表达的意思是什么呢?如果你今天讲数据的话,千万不要觉得大数据是从数据变成大数据的,不是这样的,其实今天实际上是一个把过去从所谓的信息社会变成了数据社会,可能这样讲更好一点。
这句话是什么意思呢?过去因为没有互联网,因为没有计算能力,所以你能够得到的数据一定要大家觉得马上很有价值的东西,大家过去称之信息。
今天是因为有了互联网巨大的计算能力以后,今天你是可以得到很多数据,而不追求今天的数据价值,但是它在第二天可以带来更大的价值。
从第一天起大家都知道数据,它是从信息到数据的转变,因为有了互联网,有了计算能力,大家可以设想一下第一天会要求拿到的是最有用的信息,但是过了两天发现,今天看起来没有用的东西变成了最有用的东西。
谷歌是做的最好的例子,让一个点击,鼠标点一点可以挣几千美金,鼠标这个东西,在微软时代,多少人点鼠标没有人把它变成财富,但是互联网时代把它变成了财富。这是非常典型的例子。
只收集信息,今天看来不会变成你的财富了,而去年得到看起来没有价值的东西可以变成财富,这是阿里巴巴自己很重要的理解。
今天我们对数据的理解,尽管有很多消费者喜欢,但是还很粗浅。我曾经跟马总讲的话,对我们自己公司反省,阿里巴巴对数据的理解还是非常原始的,另外一个角度讲,阿里巴巴对数据的理解不会超过苏宁对电子商务的理解。应该尊重苏宁集团,但苏宁对电子商务的理解的确不够。
讲这句话的意思是,大家对这件事情的认识还是很浅,我们对数据很尊敬,只是想表达一下我们在非常原始的状态,在这个行业,今天刚刚开始,严格上讲也没有专家,大家碰到的都是新问题,但是挑战不要低估了,走出两个误区,一个是觉得把过去的数据,过去谈数据,今天再谈大一点,把方法再搬过来。第二,脱离了互联网跟云计算讲数据,也是蛮大的误区。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16