京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代下 CRM选型关键在于数据分析能力
大数据时代下 CRM选型关键在于数据分析能力大数据时代,客户关系管理数据越多越好?我们生活在一个数据爆炸的年代,移动互联网、云计算等现代信息技术的发展让数据量搭上腾飞的火箭,从TB(1024GB=1TB)级别跃升到PB(1024TB=1PB)、EB(1024PB=1EB)乃至ZB(1024EB=1ZB)级别。一天之中,互联网产生的全部内容可以刻满1.68亿张DVD;发出的邮件有2940亿封之多(相当于美国两年的纸质信件数量);发出的社区帖子达200万个(相当于《时代》杂志770年的文字量)……身处大数据洪流,企业的客户关系管理也不能幸免,同样面临着来自四处八方的大量数据,如顾客对品牌的反应,股票趋势和市场预测等外部数据,客户沟通记录、客户购买产品、客户基本信息、客户售后服务等内部数据。在实际企业管理过程中,很多企业容易被大数据冲昏了头,认为客户关系管理掌握越多关于客户和产品的信息,就能够了解客户和产品更全面,就越能在激励的市场竞争中稳住阵脚。其实,在客户关系管理中,数据不是越多越好,数据有用、有价值才是关键。如何在这些大量的数据中甄选出有价值的数据呢?这是新时期所有企业进行客户关系管理首要解决的问题。选用嵌入BI的CRM才是全面的客户关系管理 信息化时代,很多企业进行客户关系管理都会选用CRM系统。传统的CRM系统一般都能够涵盖市场营销管理、客户信息管理、销售管理、售后服务管理等功能模块,管理链条从售前、售中,延伸到售后的客户关系,堪称360°全面客户自动化管理。然而,大数据时代,面对纷繁复杂的大量数据,这样的360°全面客户自动化管理却已经跟不上时代的步伐,新时期的CRM要求嵌入BI功能,能够对海量的数据进行分析处理,甄选出有用的数据,作为管理层科学决策的数据参考,彰显出数据的价值。因此,大数据时代,选用嵌入BI功能的CRM系统才称得上全面的客户关系管理。而且,由于数据量的庞大与复杂,嵌入的BI功能必须经受得住考验—数据处理能力要强大,能够应对呈几何级别增长的数据量;数据分析要实时,能够跟上不断变化着的数据;数据汇总要精准,能够真实反映客户和产品情况。可以说,大数据时代下,CRM选型的关键在于其数据分析能力,企业在进行CRM系统选型时要重点考察系统的数据分析能力。“采-存-剖-现”四部曲 CRM数据分析能力大考验大数据时代,企业需要一款嵌入BI功能的CRM系统,更为重要的是,嵌入的BI功能要强大。那么,CRM系统要具备怎样的数据分析能力才能应对源源不断产生的数据量呢?8thManage专家认为,可以从数据采集、数据存储、数据分析、数据展示等四个方面入手,只有在源头上采集到精准的数据、拥有全方位的数据库管理,以及实时精准快捷深入的数据分析和清晰的数据分析结果展示,才算是真正强大的CRM数据分析能力。
一、自动快速地采集精准的数据。大数据时代,虽然各种各样的数据层出不穷,但却并不是每一个数据都是有用的,事实上,有很大的一部分数据对于企业来说是没有参考意义的。嵌入BI功能的CRM系统必须支持在源头上高效率低成本得采集到精准的数据,轻轻松松地掌握有效的第一手资料。二、全方位数据库管理。大数据时代,数据的形式非常多样化,不仅有结构化的数据,还包含了大量的非结构化数据,如何规范化得存储这些不规则的数据对于企业来说也是一种挑战。能够对多样化和非结构化数据进行统一和规范化地存储和管理,也是CRM数据分析能力的体现。三、数据分析要实时精准快捷深入。海量的数据,关键在于通过分析整合,转换为对企业有价值的信息,数据处理是CRM系统应对大数据挑战必要的一个环节,它将直接支持管理层的科学决策。大数据时代,数据分析要实时精准快捷,并且要能够多层次深入地挖掘数据的内涵,这也是CRM数据分析能力最重要的一个体现。四、数据展示要清晰,一目了然。分析再准确,但若不能清晰地展示给管理层,科学决策也无从说起。数据展示是CRM数据分析能力考验最后一关,要支持多形式多维度全面地展示企业的客户和产品情况,管理层对企业客户和产品情况一目了然,决策起来自然更加科学合理。8thManage CRM是由高亚科技(广州)有限公司自主研发的客户关系管理系统,其嵌入式商业智能支持灵活全面的数据库管理,自动采集数据,分析和挖掘数据信息并且自动生成实时的分析报表,把多元化的非结构化的数据转换为真正有价值的信息,让企业的管理决策更准确,创造巨大的商业价值和效益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06