
大数据时代下 CRM选型关键在于数据分析能力
大数据时代下 CRM选型关键在于数据分析能力大数据时代,客户关系管理数据越多越好?我们生活在一个数据爆炸的年代,移动互联网、云计算等现代信息技术的发展让数据量搭上腾飞的火箭,从TB(1024GB=1TB)级别跃升到PB(1024TB=1PB)、EB(1024PB=1EB)乃至ZB(1024EB=1ZB)级别。一天之中,互联网产生的全部内容可以刻满1.68亿张DVD;发出的邮件有2940亿封之多(相当于美国两年的纸质信件数量);发出的社区帖子达200万个(相当于《时代》杂志770年的文字量)……身处大数据洪流,企业的客户关系管理也不能幸免,同样面临着来自四处八方的大量数据,如顾客对品牌的反应,股票趋势和市场预测等外部数据,客户沟通记录、客户购买产品、客户基本信息、客户售后服务等内部数据。在实际企业管理过程中,很多企业容易被大数据冲昏了头,认为客户关系管理掌握越多关于客户和产品的信息,就能够了解客户和产品更全面,就越能在激励的市场竞争中稳住阵脚。其实,在客户关系管理中,数据不是越多越好,数据有用、有价值才是关键。如何在这些大量的数据中甄选出有价值的数据呢?这是新时期所有企业进行客户关系管理首要解决的问题。选用嵌入BI的CRM才是全面的客户关系管理 信息化时代,很多企业进行客户关系管理都会选用CRM系统。传统的CRM系统一般都能够涵盖市场营销管理、客户信息管理、销售管理、售后服务管理等功能模块,管理链条从售前、售中,延伸到售后的客户关系,堪称360°全面客户自动化管理。然而,大数据时代,面对纷繁复杂的大量数据,这样的360°全面客户自动化管理却已经跟不上时代的步伐,新时期的CRM要求嵌入BI功能,能够对海量的数据进行分析处理,甄选出有用的数据,作为管理层科学决策的数据参考,彰显出数据的价值。因此,大数据时代,选用嵌入BI功能的CRM系统才称得上全面的客户关系管理。而且,由于数据量的庞大与复杂,嵌入的BI功能必须经受得住考验—数据处理能力要强大,能够应对呈几何级别增长的数据量;数据分析要实时,能够跟上不断变化着的数据;数据汇总要精准,能够真实反映客户和产品情况。可以说,大数据时代下,CRM选型的关键在于其数据分析能力,企业在进行CRM系统选型时要重点考察系统的数据分析能力。“采-存-剖-现”四部曲 CRM数据分析能力大考验大数据时代,企业需要一款嵌入BI功能的CRM系统,更为重要的是,嵌入的BI功能要强大。那么,CRM系统要具备怎样的数据分析能力才能应对源源不断产生的数据量呢?8thManage专家认为,可以从数据采集、数据存储、数据分析、数据展示等四个方面入手,只有在源头上采集到精准的数据、拥有全方位的数据库管理,以及实时精准快捷深入的数据分析和清晰的数据分析结果展示,才算是真正强大的CRM数据分析能力。
一、自动快速地采集精准的数据。大数据时代,虽然各种各样的数据层出不穷,但却并不是每一个数据都是有用的,事实上,有很大的一部分数据对于企业来说是没有参考意义的。嵌入BI功能的CRM系统必须支持在源头上高效率低成本得采集到精准的数据,轻轻松松地掌握有效的第一手资料。二、全方位数据库管理。大数据时代,数据的形式非常多样化,不仅有结构化的数据,还包含了大量的非结构化数据,如何规范化得存储这些不规则的数据对于企业来说也是一种挑战。能够对多样化和非结构化数据进行统一和规范化地存储和管理,也是CRM数据分析能力的体现。三、数据分析要实时精准快捷深入。海量的数据,关键在于通过分析整合,转换为对企业有价值的信息,数据处理是CRM系统应对大数据挑战必要的一个环节,它将直接支持管理层的科学决策。大数据时代,数据分析要实时精准快捷,并且要能够多层次深入地挖掘数据的内涵,这也是CRM数据分析能力最重要的一个体现。四、数据展示要清晰,一目了然。分析再准确,但若不能清晰地展示给管理层,科学决策也无从说起。数据展示是CRM数据分析能力考验最后一关,要支持多形式多维度全面地展示企业的客户和产品情况,管理层对企业客户和产品情况一目了然,决策起来自然更加科学合理。8thManage CRM是由高亚科技(广州)有限公司自主研发的客户关系管理系统,其嵌入式商业智能支持灵活全面的数据库管理,自动采集数据,分析和挖掘数据信息并且自动生成实时的分析报表,把多元化的非结构化的数据转换为真正有价值的信息,让企业的管理决策更准确,创造巨大的商业价值和效益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18