
四大云端大数据平台评测分析_数据分析师培训
当你已经准备好实施大数据,请仔细的评估云提供商提供的大数据功能,确保找到最合适的。下面我们来看一下四种云服务产品。
当谈到在云端实施大数据战略时,好消息是你会有很多选择。但是,这同时也是一个坏消息。来自Forrester Research最近的一份报告强调,尽管大数据云服务很强大,他们也有可能造成混乱,从而需要企业采用比传统的方式更加灵活,琐碎的方法。该报告的结论是:在云计算领域中没有一种服务是适合所有状况的。
最大的三家公有云平台—亚马逊Web服务(AWS)、微软的Azure和Google--提供了范围广泛的大数据服务,但每一种服务又完全不同。由于每个公司的大数据需求不同,技能集也不同,评估所有的平台来确保你获得的是正确组合的服务非常重要,Kirk Borne,乔治梅森大学的数据科学家,天文物理和计算科学教授同时也是一位知名的大数据专家这样建议道。
“任何大数据的实施都必须从你试图解决的问题开始,”Borne说。“你需要在花大把资金之前先了解企业的情况,确保你从可用的服务中选择正确的那个。”
下面来看下这三大主流云平台提供的大数据产品,以及第四家Altiscale,这是一家比较新的公司,有自己的Hadoop云平台。
AWS:选择和机遇
在每一项迁移到云的决策中,一个平台的“生态系统”,即服务、合作伙伴、专家和系统集成师扮演了重要的角色。根据Ouoble,一家在 AWS,Google和Azure平台提供大数据即服务公司的联合创始人兼CEO Ashish Thusoo的观点,AWS的生态系统要比其他的云平台更大、发展得更好。AWS生态系统使得这个平台对于想要将大数据迁移到云中的企业客户来说非常引人注目和令人感到安心,他说。
这种吸引力的一部分原因是因为各种可用的服务。亚马逊的一整套大数据服务包括了Hadoop的弹性MapReduce即EMR;用作数据流处理的 Kinesis;基于集群的数据仓库RedShift;面向亚马逊关系型数据库RDS的Aurora和My SQL(等其他);NoSQL数据库DynamoDB;超简单存储或者S3;还有全新的Amazon Machine Learning。
“AWS能够提供过去的历史报表和仪表盘,现有的数据流处理和分析,和现在未来预测的建模工具,”Mike Gualtieri,一名Forrester Research的分析师,Forrester大数据研究报告合著者说。他认为AWS的RedShift对那些已经厌倦了很慢的传统数据库环境中的报表的企业客户来说尤其诱人。“RedShift是AWS服务中发展最快的,将你的数据迁移到那里运行所有的分析非常合理,”他说。“这真的是一种云的合理使用方式。”
Google BigQuery:开发者之梦
Google的大数据平台BigQuery,是为流数据和持续分析而设计的。该平台有一个预测性的数据API,一些其它的Google专属API和标准的 Java产品。“关于Google的问题是它是非常面向开发人员的,比其他平台更加如此,”Gualtieri说。“在Google,你必须接受他们专有的技术和API,并且足够聪明到可以搞清楚。”Google平台提供了Hadoop作为一个大数据的选项,但是Gualtieri提醒公司企业如果想在 Google上运行Hadoop的话需要具备企业内部的专业技能。“它就在那里,但你最好自己要知道如何获得,具体到命令行的级别,”他说。
但对于某些公司,Ouoble的Thusoo说,Google则是最完美的选择,尤其当价格和性能决定一切的时候。“我们对Google在价格和性能上做了基准测试,Google在这块绝对是佼佼者,”他说,“性价比通常对创业公司非常重要,因此谷歌是他们的最佳选择。”
Azure:Hadoop之力
Azure平台的大数据产品HDInsight,和SQL数据库以及存储一起,旨在能够同微软流行的Excel电子表格无缝工作。这对于客户来说是一个巨大的卖点,因为根据Forrester的报告表明,在大数据所在的地方处理大数据(也叫数据重力)会让整个过程更轻松。“我真的认为Azure在混合领域里有其优势,”Thusoo说,“很大部分是因为微软可以利用自己本地应用的影响力。”
HDInsight是由Apache的Hadoop支持的,这也是一大吸引力,Forrester的Gualtieri说。“微软有许多不同的工具,包括机器学习和预测分析,”他说。“而对于任何想要用Hadoop做大数据分析的人来说,Azure是一个非常好的选择,因为它很容易获得并且具有强大的控制面板。”
Altiscale:一直都是大数据
成立3年的Altiscale最开始是在自己的云里推出Hadoop即服务。这家公司的创始人,Raymie Stata,在创建Altiscale之前曾是雅虎的CTO并且为这家网络巨头开发了Hadoop即服务。“Altiscale的设计从本质上是独一无二的,”Altiscale的COO Mike Maciag解释道。用户可以从三大云服务供应商获得“通用的”大数据服务,但Altiscale的云是从硬件以上都进行了定制可以更高效地运行大数据,Maciag说。“大型云供应商为很多的纵向处理提供了良好的计算密集型的功能,但大数据更多的是大规模并行处理,这意味着它是横向的。 Altiscape是专为Hadoop构建的来避免吵闹邻居的问题。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30