
四大云端大数据平台评测分析_数据分析师培训
当你已经准备好实施大数据,请仔细的评估云提供商提供的大数据功能,确保找到最合适的。下面我们来看一下四种云服务产品。
当谈到在云端实施大数据战略时,好消息是你会有很多选择。但是,这同时也是一个坏消息。来自Forrester Research最近的一份报告强调,尽管大数据云服务很强大,他们也有可能造成混乱,从而需要企业采用比传统的方式更加灵活,琐碎的方法。该报告的结论是:在云计算领域中没有一种服务是适合所有状况的。
最大的三家公有云平台—亚马逊Web服务(AWS)、微软的Azure和Google--提供了范围广泛的大数据服务,但每一种服务又完全不同。由于每个公司的大数据需求不同,技能集也不同,评估所有的平台来确保你获得的是正确组合的服务非常重要,Kirk Borne,乔治梅森大学的数据科学家,天文物理和计算科学教授同时也是一位知名的大数据专家这样建议道。
“任何大数据的实施都必须从你试图解决的问题开始,”Borne说。“你需要在花大把资金之前先了解企业的情况,确保你从可用的服务中选择正确的那个。”
下面来看下这三大主流云平台提供的大数据产品,以及第四家Altiscale,这是一家比较新的公司,有自己的Hadoop云平台。
AWS:选择和机遇
在每一项迁移到云的决策中,一个平台的“生态系统”,即服务、合作伙伴、专家和系统集成师扮演了重要的角色。根据Ouoble,一家在 AWS,Google和Azure平台提供大数据即服务公司的联合创始人兼CEO Ashish Thusoo的观点,AWS的生态系统要比其他的云平台更大、发展得更好。AWS生态系统使得这个平台对于想要将大数据迁移到云中的企业客户来说非常引人注目和令人感到安心,他说。
这种吸引力的一部分原因是因为各种可用的服务。亚马逊的一整套大数据服务包括了Hadoop的弹性MapReduce即EMR;用作数据流处理的 Kinesis;基于集群的数据仓库RedShift;面向亚马逊关系型数据库RDS的Aurora和My SQL(等其他);NoSQL数据库DynamoDB;超简单存储或者S3;还有全新的Amazon Machine Learning。
“AWS能够提供过去的历史报表和仪表盘,现有的数据流处理和分析,和现在未来预测的建模工具,”Mike Gualtieri,一名Forrester Research的分析师,Forrester大数据研究报告合著者说。他认为AWS的RedShift对那些已经厌倦了很慢的传统数据库环境中的报表的企业客户来说尤其诱人。“RedShift是AWS服务中发展最快的,将你的数据迁移到那里运行所有的分析非常合理,”他说。“这真的是一种云的合理使用方式。”
Google BigQuery:开发者之梦
Google的大数据平台BigQuery,是为流数据和持续分析而设计的。该平台有一个预测性的数据API,一些其它的Google专属API和标准的 Java产品。“关于Google的问题是它是非常面向开发人员的,比其他平台更加如此,”Gualtieri说。“在Google,你必须接受他们专有的技术和API,并且足够聪明到可以搞清楚。”Google平台提供了Hadoop作为一个大数据的选项,但是Gualtieri提醒公司企业如果想在 Google上运行Hadoop的话需要具备企业内部的专业技能。“它就在那里,但你最好自己要知道如何获得,具体到命令行的级别,”他说。
但对于某些公司,Ouoble的Thusoo说,Google则是最完美的选择,尤其当价格和性能决定一切的时候。“我们对Google在价格和性能上做了基准测试,Google在这块绝对是佼佼者,”他说,“性价比通常对创业公司非常重要,因此谷歌是他们的最佳选择。”
Azure:Hadoop之力
Azure平台的大数据产品HDInsight,和SQL数据库以及存储一起,旨在能够同微软流行的Excel电子表格无缝工作。这对于客户来说是一个巨大的卖点,因为根据Forrester的报告表明,在大数据所在的地方处理大数据(也叫数据重力)会让整个过程更轻松。“我真的认为Azure在混合领域里有其优势,”Thusoo说,“很大部分是因为微软可以利用自己本地应用的影响力。”
HDInsight是由Apache的Hadoop支持的,这也是一大吸引力,Forrester的Gualtieri说。“微软有许多不同的工具,包括机器学习和预测分析,”他说。“而对于任何想要用Hadoop做大数据分析的人来说,Azure是一个非常好的选择,因为它很容易获得并且具有强大的控制面板。”
Altiscale:一直都是大数据
成立3年的Altiscale最开始是在自己的云里推出Hadoop即服务。这家公司的创始人,Raymie Stata,在创建Altiscale之前曾是雅虎的CTO并且为这家网络巨头开发了Hadoop即服务。“Altiscale的设计从本质上是独一无二的,”Altiscale的COO Mike Maciag解释道。用户可以从三大云服务供应商获得“通用的”大数据服务,但Altiscale的云是从硬件以上都进行了定制可以更高效地运行大数据,Maciag说。“大型云供应商为很多的纵向处理提供了良好的计算密集型的功能,但大数据更多的是大规模并行处理,这意味着它是横向的。 Altiscape是专为Hadoop构建的来避免吵闹邻居的问题。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08