京公网安备 11010802034615号
经营许可证编号:京B2-20210330
突破传统BI:应用“数据发现”的五项准则
根据IDC公司的研究,到2020年,数字数据将有可能达到40万亿GB。随着大数据的到来,大多数企业都部署了某种形式的基本商务智能系统,以从传统企业系统中抽取大量数据,为决策者提供各种分析报告,进而改善企业绩效。然而,目前超过80%的企业信息是非结构化数据,要分析这些数据,传统商务智能环境是力不能及的。这些数据存在于网站、社交媒体、内容管理系统、电子邮件、各种文档、传感器数据、外部数据库等数据源中,类型多种多样,且不断变化,数据量也在成倍增长。
企业现在已经迅速认识到,要实现创新、满足市场需求并领先竞争对手,统一结构化和非结构化数据至关重要,这样就可以更加全面地了解企业决策对经营情况的影响。然而,现实情况是,随着新型数字数据源的激增,数据种类而非数据量成了最大挑战。多种数据源,加上基于互联网的企业文化以及消费类移动应用对企业级软件的影响,使得业务部门用户迫切要求扩展现有商务智能基础设施,以充分利用非结构化数据,更好地了解某些新的或不熟悉的商务情况。
由于有大量客户、员工及产品知识尚未得到充分利用,因此企业正在广泛寻求用新的方法补充传统商务智能分析,使业务部门用户能够自由、简便、快速地研究相关信息,洞察新动向。例如,某个家电制造商用其商务智能系统跟踪金属铜的价格变动。现在该厂商发现铜价已经相当高,正转而采用信息发现应用,以找到其他可用材料。正是基于上述背景,企业需要思考怎样突破传统商务智能系统限制,从非结构化数据中发现有用信息。这里先从数据发现谈起。
从根本上来看,企业数据分析就是充分利用信息,深入洞察各种现象的本质,进而采取正确的行动。接下来,正确的行动会带来更大的商业成功、更强的竞争优势、更高的客户忠诚度、更多的利润和更大的市场份额。
然而,目前并没有很多企业在数据分析上取得超常成功。因为尽管大多数企业拥有丰富的信息、大量的分析工具以及日益增强的计算能力,但是要通过数据分析准确洞察业务现象,仍然面临着无数挑战。例如,过去在企业内部已经彻底实现标准化的传统IT平台,现在恰恰成了妨碍信息分析的瓶颈。
在这种情况下,“企业数据发现”自然而然对现有商务智能分析起到了补充作用。商务智能是一种敏捷灵活的分析方法,而“企业数据发现”则简化了对多样化信息的访问,无论什么类型的数据,都可以通过“企业数据发现”简便即时地访问,从而为商务分析创造了良好的条件。
这正好满足了企业的需求。企业如今对任何数据都需要进行快速、简便、直觉式的访问,以进行数据分析,为业务及IT决策提供依据。“企业数据发现”可帮助企业打破目前的僵局,企业无需放弃现有数据分析平台及基础设施,就能够更加敏捷地分析数据,提高分析结果的准确性。让我们通过一个有趣的例子,来探讨“企业数据发现”的5项准则。
假定某公司某月在某地区的销售额出现了激增。那么怎样才能发现激增的原因,然后复制这种成功的销售模式呢?有关人员直觉上认为,不久前的媒体宣传活动可能发挥了作用。为了弄清是否如此,该公司需要汇总销售数据,其中不仅包括报告中的数据,还包括媒体宣传活动实际产生的原始数据。怎样才能快速汇总销售数据与媒体宣传活动产生的数据呢?
通过可管理的自助服务发现功能,无论在企业内部还是外部,都可以简便快速地存取IT系统中的多样化数据集。业务部门用户能够自己上传并汇总数据,获得准确的分析结果。
汇总了各种销售数据及媒体宣传活动数据后,仍然没有发现十分清晰的原因,这时怎么办?另外,业务部门用户还建议,加入社交媒体反馈信息,以收集更多有关此次宣传活动的数据。
通过可管理式自助服务数据发现平台,企业可以简便地访问多种数据,包括非结构化数据以及包含大量文本信息的数据,目前的数据分析环境常常不包括这类数据。同样,通过这一自助服务平台,业务部门用户可以快速整合现有数据与各类新信息,例如来自博客、客户评论、市场调查报告文本、微博、电话记录以及更多信息源的信息,以发现促进业务增长的新动力。
在寻找销售额激增的根本原因时,业务部门用户希望无需任何培训,就能够像使用网页功能一样,搜索上述所有类型的数据。
全功能整合式搜索、导航及强大的视觉分析工具包对数据发现至关重要。当企业寻求增强洞察力、扩大竞争优势时,总是有走进死胡同的风险(+本站微信networkworldweixin),因此必须获得对所有情况的分析和洞察,才能有助于保持正确方向。
相关人员还发现,销售额激增出现在媒体宣传活动期间,而且在销售额激增这段时间,有一场大型体育赛事。这条新线索导致了一个新问题:一场体育赛事能与销售额激增有什么关系呢?数据分析给出了答案,揭示出这场赛事的价值:这场赛事插播了此次宣传活动的一个广告。这样一来,就有了明确的研究目标了。
传统数据分析方法依据设定好的问题,按照已经走过无数次的路线,分析经营中的各种现象。而通过自助式服务发现功能,业务部门用户可以快速、灵活、敏捷地发现以前无法得到的分析方向。无论何时,只要业务部门需要,就可以利用自助服务发现功能持续与数据对话并得到答案,因为数据发现平台已经为信息编制了索引。
在销售额激增分析接近尾声时,是否确实弄清了广告对销售额激增的贡献?传统数据分析一般不涉及定性信息,例如一些隐藏的、可揭示出人们的真正想法及其行为动因的关键因果联系。定性信息常常是揭示根本原因的关键所在。在本例中,定性信息能够解释销售额激增的原因:社交媒体上的帖子显示出,这场体育比赛的观众很喜欢这个广告,因此该广告在这一地区引起了病毒式反应。
“企业数据发现”还能够通过充实文本信息,发现非结构化内容中隐藏的深度信息,助力业务部门用户最充分地利用原始文本信息。充实的文本信息与全盘考虑企业情况的做法相结合,有助于企业全面了解业务进展,做出有真正依据的决策。
企业当前面临的挑战是,需要管理海量信息,因为所有这些信息都有可能影响决策的正确性。而IT部门面临的巨大压力则是,在控制成本的同时,仍然能够对业务变化做出敏捷反应。
基于上述5项原则的“企业数据发现”是一种全面的解决方案,能够帮助企业快速、直觉地访问传统及非传统数据,其中包括外部信息及非结构化信息。企业应该考虑将“企业数据发现”纳入其数据分析战略,以充满自信和不断创新的态度,充分利用“企业数据发现”,并从中获益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09