
突破传统BI:应用“数据发现”的五项准则
根据IDC公司的研究,到2020年,数字数据将有可能达到40万亿GB。随着大数据的到来,大多数企业都部署了某种形式的基本商务智能系统,以从传统企业系统中抽取大量数据,为决策者提供各种分析报告,进而改善企业绩效。然而,目前超过80%的企业信息是非结构化数据,要分析这些数据,传统商务智能环境是力不能及的。这些数据存在于网站、社交媒体、内容管理系统、电子邮件、各种文档、传感器数据、外部数据库等数据源中,类型多种多样,且不断变化,数据量也在成倍增长。
企业现在已经迅速认识到,要实现创新、满足市场需求并领先竞争对手,统一结构化和非结构化数据至关重要,这样就可以更加全面地了解企业决策对经营情况的影响。然而,现实情况是,随着新型数字数据源的激增,数据种类而非数据量成了最大挑战。多种数据源,加上基于互联网的企业文化以及消费类移动应用对企业级软件的影响,使得业务部门用户迫切要求扩展现有商务智能基础设施,以充分利用非结构化数据,更好地了解某些新的或不熟悉的商务情况。
由于有大量客户、员工及产品知识尚未得到充分利用,因此企业正在广泛寻求用新的方法补充传统商务智能分析,使业务部门用户能够自由、简便、快速地研究相关信息,洞察新动向。例如,某个家电制造商用其商务智能系统跟踪金属铜的价格变动。现在该厂商发现铜价已经相当高,正转而采用信息发现应用,以找到其他可用材料。正是基于上述背景,企业需要思考怎样突破传统商务智能系统限制,从非结构化数据中发现有用信息。这里先从数据发现谈起。
从根本上来看,企业数据分析就是充分利用信息,深入洞察各种现象的本质,进而采取正确的行动。接下来,正确的行动会带来更大的商业成功、更强的竞争优势、更高的客户忠诚度、更多的利润和更大的市场份额。
然而,目前并没有很多企业在数据分析上取得超常成功。因为尽管大多数企业拥有丰富的信息、大量的分析工具以及日益增强的计算能力,但是要通过数据分析准确洞察业务现象,仍然面临着无数挑战。例如,过去在企业内部已经彻底实现标准化的传统IT平台,现在恰恰成了妨碍信息分析的瓶颈。
在这种情况下,“企业数据发现”自然而然对现有商务智能分析起到了补充作用。商务智能是一种敏捷灵活的分析方法,而“企业数据发现”则简化了对多样化信息的访问,无论什么类型的数据,都可以通过“企业数据发现”简便即时地访问,从而为商务分析创造了良好的条件。
这正好满足了企业的需求。企业如今对任何数据都需要进行快速、简便、直觉式的访问,以进行数据分析,为业务及IT决策提供依据。“企业数据发现”可帮助企业打破目前的僵局,企业无需放弃现有数据分析平台及基础设施,就能够更加敏捷地分析数据,提高分析结果的准确性。让我们通过一个有趣的例子,来探讨“企业数据发现”的5项准则。
假定某公司某月在某地区的销售额出现了激增。那么怎样才能发现激增的原因,然后复制这种成功的销售模式呢?有关人员直觉上认为,不久前的媒体宣传活动可能发挥了作用。为了弄清是否如此,该公司需要汇总销售数据,其中不仅包括报告中的数据,还包括媒体宣传活动实际产生的原始数据。怎样才能快速汇总销售数据与媒体宣传活动产生的数据呢?
通过可管理的自助服务发现功能,无论在企业内部还是外部,都可以简便快速地存取IT系统中的多样化数据集。业务部门用户能够自己上传并汇总数据,获得准确的分析结果。
汇总了各种销售数据及媒体宣传活动数据后,仍然没有发现十分清晰的原因,这时怎么办?另外,业务部门用户还建议,加入社交媒体反馈信息,以收集更多有关此次宣传活动的数据。
通过可管理式自助服务数据发现平台,企业可以简便地访问多种数据,包括非结构化数据以及包含大量文本信息的数据,目前的数据分析环境常常不包括这类数据。同样,通过这一自助服务平台,业务部门用户可以快速整合现有数据与各类新信息,例如来自博客、客户评论、市场调查报告文本、微博、电话记录以及更多信息源的信息,以发现促进业务增长的新动力。
在寻找销售额激增的根本原因时,业务部门用户希望无需任何培训,就能够像使用网页功能一样,搜索上述所有类型的数据。
全功能整合式搜索、导航及强大的视觉分析工具包对数据发现至关重要。当企业寻求增强洞察力、扩大竞争优势时,总是有走进死胡同的风险(+本站微信networkworldweixin),因此必须获得对所有情况的分析和洞察,才能有助于保持正确方向。
相关人员还发现,销售额激增出现在媒体宣传活动期间,而且在销售额激增这段时间,有一场大型体育赛事。这条新线索导致了一个新问题:一场体育赛事能与销售额激增有什么关系呢?数据分析给出了答案,揭示出这场赛事的价值:这场赛事插播了此次宣传活动的一个广告。这样一来,就有了明确的研究目标了。
传统数据分析方法依据设定好的问题,按照已经走过无数次的路线,分析经营中的各种现象。而通过自助式服务发现功能,业务部门用户可以快速、灵活、敏捷地发现以前无法得到的分析方向。无论何时,只要业务部门需要,就可以利用自助服务发现功能持续与数据对话并得到答案,因为数据发现平台已经为信息编制了索引。
在销售额激增分析接近尾声时,是否确实弄清了广告对销售额激增的贡献?传统数据分析一般不涉及定性信息,例如一些隐藏的、可揭示出人们的真正想法及其行为动因的关键因果联系。定性信息常常是揭示根本原因的关键所在。在本例中,定性信息能够解释销售额激增的原因:社交媒体上的帖子显示出,这场体育比赛的观众很喜欢这个广告,因此该广告在这一地区引起了病毒式反应。
“企业数据发现”还能够通过充实文本信息,发现非结构化内容中隐藏的深度信息,助力业务部门用户最充分地利用原始文本信息。充实的文本信息与全盘考虑企业情况的做法相结合,有助于企业全面了解业务进展,做出有真正依据的决策。
企业当前面临的挑战是,需要管理海量信息,因为所有这些信息都有可能影响决策的正确性。而IT部门面临的巨大压力则是,在控制成本的同时,仍然能够对业务变化做出敏捷反应。
基于上述5项原则的“企业数据发现”是一种全面的解决方案,能够帮助企业快速、直觉地访问传统及非传统数据,其中包括外部信息及非结构化信息。企业应该考虑将“企业数据发现”纳入其数据分析战略,以充满自信和不断创新的态度,充分利用“企业数据发现”,并从中获益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08