
维斯塔斯利用 IBM 大数据分析实现“智慧风能”
IBM近日宣布,丹麦能源公司维斯塔斯 (Vestas Wind Systems)将利用业界领先的 IBM 大数据分析软件和卓越的 IBM 系统优化风力涡轮机配置方案,从而实现最高效的能量输出。对于可再生能源行业而言,风力涡轮机的选址和配置是一项重大挑战。维斯塔斯正是希望应对该项挑战,将公司业务拓展到全新市场,并积极促进风能在全球的普及。
通过在IBM “烈焰风暴”超级计算机上运行 IBM BigInsights 软件,维斯塔斯公司得以分析诸多类型的拍字节结构化和非结构化数据:如气象报告、潮汐相位、地理空间与传感器数据、卫星图像、森林砍伐地图,以及用于精确安装定位的气象建模研究等――这些以前需要数周时间完成的分析工作现在只需不到一小时即可完成。
维斯塔斯技术研发厂房选址和预测部副总裁 Lars Christian Christensen 表示:“维斯塔斯提供的涡轮机通常都要服役数十年,因此客户要求在安装之前了解涡轮机的能源输出量和投资回报率。通过使用 IBM 的软件和系统,我们现在可以迅速回答这些问题,从而有利锁定新的风能市场,帮助客户实现雄心勃勃的可再生能源目标。” 在选址过程中,涡轮机一旦投入运转,维斯塔斯工程师就会使用全新的软件和超级计算机预测其性能,包括分析各个叶片对气候变化的反应,并确定最佳维护时间。
在未来四年内,该公司将有望对更多类型、规模更大的气象数据集进行分析,其分析量届时可达20拍字节以上。 如果能源公司安装风力涡轮机时定位不正确,涡轮机产出的电力便不足以为风能投资带来合理的回报,也无法保持较低的电力成本。涡轮机正确定位的主要因素包括空气湍流和风向,以及空间、生态和美学方面的考量。 据悉,维斯塔斯在丹麦的厂房选址与预测部门将充分运用 IBM 在分析上的专长,为客户设计新一代风力技术。
届时,IBM 将安排一支大数据分析项目专家团队为该部门提供全天候24小时技术支持。此外,维斯塔斯能够以虚拟访问方式访问IBM位于硅谷的大数据开发实验室,此举将进一步帮助其探索发掘分析技术在风能领域的全新应用途径。 IBM 信息管理软件总经理 Arvind Krishna 表示:“维斯塔斯与IBM的合作展现了大型组织如何利用大数据分析和超级计算机制定智慧商务决策,在有力推动增长的同时解决大数据这个全球最紧迫的问题。现在,我们正在帮助客户在不受数据传播速度和数据来源的限制下从各种类型数据中获得洞见。我们相信这种至关重要的能力将为整个行业带来变革。”
据美国风能协会报告显示,如果美国的风力发电容量到 2030 年能增加到 20%,全国便可以减少至少 7600 吨二氧化碳排放,并节省 4 万亿加仑的电力行业用水,以及12% 的天然气消费需求。在欧洲,对于加速风力发电场交付和选址的技术需求也日渐增长。德国能源与公共事业协会最新报告显示,2011 年上半年,德国的电力产量中 20.8% 来自风力等可再生能源,该数字创下历史新高。新西兰也在2011年采取了一项十分积极的能源战略,要求国内 90% 的电力均采用风力等可再生能源发电。 IBM InfoSphere BigInsights 软件是 200 余名 IBM 研究院科学家历经 4 年潜心开发的成果。该软件采用开源技术 Apache Hadoop,可提供大规模并行处理框架、太字节到拍字节级别数据的可扩展存储,并可通过其 BigSheets 组件支持情景假设。BigInsights 是 IBM 大数据软件平台的重要组成部分,该平台还包含 InfoSphere Streams 软件,可实时分析流入组织的数据,并通过检测其变化了解数据中是否出现了新的模式或趋势。
维斯塔斯公司在 1222 台相互连接的 System x iDataPlex 服务器上运行 BigInsights 软件,这些服务器经过工作负荷优化,共同组成了 “烈焰风暴” 超级计算机,每秒钟能进行 150 万亿次运算――相当于每名丹麦公民每秒进行 3000 万次计算。在全球超级计算机 500 强名单中,Firestorm 名列第 53 位,同时,它还是这份名单上的第三大商用系统,并以其更卓越的能效取代了维斯塔斯最初使用的惠普系统。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18