
SAP:大数据必须和行业应用相结合_数据分析师考试场
在大数据这个词出现之前,关于数据价值的问题就一直存在。 至于为什么近期大数据如此火热,我认为,真正驱动大数据热的原因来自于用户所面临的商业挑战。
事实上,我们在和客户谈论关于大数据的问题时,经常会从大数据谈到大、而有用的数据,或者是大却不好的数据,抑或是如何获取实时的数据分析等。由此可见,什么样的名词其实并不重要,关键在于能够帮助用户解决怎样的业务问题,怎样让用户的数据能够发挥作用,变为真正的业务价值和“真 金白银”的收入。 Q:中国的大数据市场潜力如何? 麦马翰:中国的大数据市场有着巨大的潜在商机。首先,中国有很多大型的客户,例如银行、电信运营商等,他们对于大数据分析都有着很迫切的需求。以银行为例,他们有着非常大的数据量,但如何才能够从这些大数据中提取价值,来改善用户体验,提升利润率呢? 以往在市场竞争不是十分激烈时,这一需求并不是十分迫切。
但随着市场竞争的加剧,以及中国居民收入的迅速增长,银行的客户服务方式也在发生变化,需要针对客户的个性化需求提供及时的、有针对性的服务,否则很有可能会因为服务方面的问题而造成客户的大量流失。 但银行如何才能知道哪些用户在消费行为、收入等方面发生了变化呢?采用传统的数据分析方式,银行也许可以在一个月后知道这些信息,但那为时已晚。而通过大数据的应用,银行可以实时的了解哪些客户的消费行为发生改变,收入发生了怎样的变化,这样就可以告诉银行的客户经理,采取有针对性的服务去留住那些客户。 Q:与竞争对手相比,SAP的大数据策略有什么不同? 麦马翰:市场上有很多大数据厂商,但其实S A P并不是经常谈论大数据。因为,我们认为,大数据必须和特定行业用户的特定应用相结合,从业务需求的角度来进行讨论,才更有价值。
所以,我们在和用户沟通时,更多是在分析用户的业务发展方向,以及用户所面临的业务难题等。而不是简单的说大数据应该存在哪里,或者大数据应用如何使用等。 举个例子,一家美国的大型农机产品生产企业,面临着来自中国和东南亚一起企业的市场竞争压力,因此他们想通过I T应用的实施来帮助他们增强市场竞争力。我们在和这家企业进行沟通时,并没有谈什么大数据,而是从业务角度入手,看如何能够使其公司所生产的农机产品具有更大的价值:因为,竞争对手产品的价格可能只是他的1/2。
通过对用户的业务进行分析,我们发现他们可以为用户提供一些增值的服务来提升自己对客户的价值,从而避免陷入到单纯的价格竞争中,例如通过地理情况的分析、天气情况的分析,来看看不同的农作物,在不同的地理位置、不同的土壤条件、不同的天气情况下,它的产量如何。
这样他们就能够为用户提供相应的种植方面的建议和服务。针对这些业务需求,我们给他们提供了数据实时分析的解决方案,通过对数据进行实时分析,他们可以为用户提供更多的、更有价值的建议和服务,也使自己的市场竞争力得到了大幅的提升。
我们认为,从业务的角度出发来探讨大数据,远比单纯的卖设备或软件等对于用户更有价值,这也是S A P与竞争对手的很大区别,因为我们对于用户的业务更加了解,也更有经验。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02