京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析师或者数据挖掘工程师面试都问什么问题
经常被问到一个问题,数据分析师或者数据挖掘工程师面试都问什么问题啊?特别是以下几类人群:
1、想转行做数据分析工作的朋友。
2、之前在比较小的公司做数据分析师,去大公司面试。
3、在校大学生。
在回答这些问题之前,先谈我的一个面试经历,记得之前我在一家小公司做数据分析师的时候,有朋友推荐我去一家大公司去面试数据分析师。当时我也在想,在面试大公司的数据分析师一定会问:
1、你做过哪些模型?
2、用什么工具做的啊?
3、你会或者知道哪些算法啊?
4、数据量有多大?
.......
但是当我去沟通下来的时候,问关于数据挖掘模型算法原理、使用什么工具的东西不多。更多是问一些关于项目背景、怎么思考这些项目、如何使用这些模型结果、怎么推动业务方去使用数据结果。【坦白说当时觉得不可思议,怎么问这些问题呢?】
所以大家在面试数据分析岗位的时候,基础知识是必须的。但是更多要关注数据实现数据价值,特别是从事一段时间数据分析同学,但如果仅仅是刚准备从事数据分析同学,基础的专业知识与技能肯定是面试必问的话题。如果这家公司希望未来培养或者招的真的做数据分析的,那就会像我面试碰到的,一定也会很关注面试之外的问题。
回到具体面试的问题,PS:这里我仅仅谈谈我的几点看法和我面试中会问到的几个问题,以及我为什么会为这些问题。
一、了解你面试岗位的工作性质
1、你对于你面试岗位价值的理解。
2、你觉得这个岗位大概的工作内容。
3、对于公司的理解。
二、沟通表达/逻辑思维
1、说一下你过往做的一些项目/说说你以前的工作经历。
2、你之前做过的一些专业分析。
3、你之前做过的模型。
4、之前是如何与业务方打交道的。
三、对于数据与商业的理解
1、如何理解数据敏感性?
2、你觉得数据怎么体现其商业价值?能否举个例子。
四、专业技能
1、基础的统计学知识。
2、数据挖掘基本的算法。
3、怎么评估模型好坏。
4、使用的工具。
5、数据挖掘流程。
6、怎么清洗变量【例如:指标定义、缺失值处理】。
7、怎么解决建模中会碰到一些技术问题【例如:共线性、不同模型针对的数据类型】。
五、学习能力
1、是怎么学习专业知识。
2、怎么学习业务知识。
六、职业发展
1、未来3年的职业规划。
2、要实现这些规划计划是怎么样。
我把面试过程可以会问几类问题,不同的面试官可以侧重点不一样。我想和所有面试数据分析师的朋友说的:
1、面试过程中大家是平等的。不要太弱势也不要太强势。
2、把你之前的工作有条理的表达出来。
3、面试一些问题的时候,可以想一想。我个人觉得,并不是所有的问题必须别人一问完,立即回答。
4、把面试当作一种学习与经历。关键是从一些面试中你能发现自己不足。
另外一些小tips:
1、面试之前了解这个岗位。了解一下这个公司。花点时间在面试公司和岗位,了解了解人家公司是干什么,如果你对这家公司特别感兴趣,去网站上看看,去体验体验人家公司的产品和服务。会让面试的人感觉到尊重。当然太贵就算了。
2、如果有认识的人或者通过一些渠道先了解一下你面试的公司,部门情况到底是怎么样的。到底要招什么样的人。
3、很多企业的招聘与实际需要的人之间有很大的出入。
4、投递简历前:花点时间在简历上:要看到一份没有错别字且能把之前工作写清楚在一张纸上真的很少。
5、机会是留给有准备的人。你准备好了吗?每次面试结束看,看看自己的不足,然后一定立即去学起来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21