
数据分析师或者数据挖掘工程师面试都问什么问题
经常被问到一个问题,数据分析师或者数据挖掘工程师面试都问什么问题啊?特别是以下几类人群:
1、想转行做数据分析工作的朋友。
2、之前在比较小的公司做数据分析师,去大公司面试。
3、在校大学生。
在回答这些问题之前,先谈我的一个面试经历,记得之前我在一家小公司做数据分析师的时候,有朋友推荐我去一家大公司去面试数据分析师。当时我也在想,在面试大公司的数据分析师一定会问:
1、你做过哪些模型?
2、用什么工具做的啊?
3、你会或者知道哪些算法啊?
4、数据量有多大?
.......
但是当我去沟通下来的时候,问关于数据挖掘模型算法原理、使用什么工具的东西不多。更多是问一些关于项目背景、怎么思考这些项目、如何使用这些模型结果、怎么推动业务方去使用数据结果。【坦白说当时觉得不可思议,怎么问这些问题呢?】
所以大家在面试数据分析岗位的时候,基础知识是必须的。但是更多要关注数据实现数据价值,特别是从事一段时间数据分析同学,但如果仅仅是刚准备从事数据分析同学,基础的专业知识与技能肯定是面试必问的话题。如果这家公司希望未来培养或者招的真的做数据分析的,那就会像我面试碰到的,一定也会很关注面试之外的问题。
回到具体面试的问题,PS:这里我仅仅谈谈我的几点看法和我面试中会问到的几个问题,以及我为什么会为这些问题。
一、了解你面试岗位的工作性质
1、你对于你面试岗位价值的理解。
2、你觉得这个岗位大概的工作内容。
3、对于公司的理解。
二、沟通表达/逻辑思维
1、说一下你过往做的一些项目/说说你以前的工作经历。
2、你之前做过的一些专业分析。
3、你之前做过的模型。
4、之前是如何与业务方打交道的。
三、对于数据与商业的理解
1、如何理解数据敏感性?
2、你觉得数据怎么体现其商业价值?能否举个例子。
四、专业技能
1、基础的统计学知识。
2、数据挖掘基本的算法。
3、怎么评估模型好坏。
4、使用的工具。
5、数据挖掘流程。
6、怎么清洗变量【例如:指标定义、缺失值处理】。
7、怎么解决建模中会碰到一些技术问题【例如:共线性、不同模型针对的数据类型】。
五、学习能力
1、是怎么学习专业知识。
2、怎么学习业务知识。
六、职业发展
1、未来3年的职业规划。
2、要实现这些规划计划是怎么样。
我把面试过程可以会问几类问题,不同的面试官可以侧重点不一样。我想和所有面试数据分析师的朋友说的:
1、面试过程中大家是平等的。不要太弱势也不要太强势。
2、把你之前的工作有条理的表达出来。
3、面试一些问题的时候,可以想一想。我个人觉得,并不是所有的问题必须别人一问完,立即回答。
4、把面试当作一种学习与经历。关键是从一些面试中你能发现自己不足。
另外一些小tips:
1、面试之前了解这个岗位。了解一下这个公司。花点时间在面试公司和岗位,了解了解人家公司是干什么,如果你对这家公司特别感兴趣,去网站上看看,去体验体验人家公司的产品和服务。会让面试的人感觉到尊重。当然太贵就算了。
2、如果有认识的人或者通过一些渠道先了解一下你面试的公司,部门情况到底是怎么样的。到底要招什么样的人。
3、很多企业的招聘与实际需要的人之间有很大的出入。
4、投递简历前:花点时间在简历上:要看到一份没有错别字且能把之前工作写清楚在一张纸上真的很少。
5、机会是留给有准备的人。你准备好了吗?每次面试结束看,看看自己的不足,然后一定立即去学起来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01