
大数据分析领袖SAS与华为建立联盟合作关系
2015年6月8日,全球领先的商业分析软件与服务供应商SAS公司宣布与全球领先的信息与通信解决方案供应商华为宣布结为联盟合作伙伴,双方将在大数据事业发展道路上携手并进。
合作共赢,构建基于Hadoop的大数据生态系统
随着各行各业数据的累积,企业需要具备将原始数据转化为全新洞察力的能力。SAS与华为的合作,旨在发挥各自强项,共同打造针对不同行业的大数据解决方案。作为高级分析领导者,SAS一直占据全球高级分析软件市场第一主导地位,其大数据分析技术和传递的卓越洞察深受企业信赖。SAS除了为产品配备强大的分析能力,还将与华为共享在金融服务业等核心行业丰富的实践经验。
二者的合作将以Hadoop生态圈的不断成长为契机,整合Hadoop架构与SAS分析的优势,实时分析处理数据,从而获取精准洞察。SAS能够将大量且复杂的精密运算应用到Hadoop集群,支持Hadoop完成整个分析生命周期,包括数据访问和管理到探索、建模和部署。SAS通过SAS® Hadoop数据加载器、SAS/ACCESS® Interface to Hadoop、SAS® In-Memory Statistics for Hadoop、SAS可视化分析(SAS® Visual Analytics)以及SAS高性能分析(SAS® High-Performance Analytics)等一系列基于Hadoop的解决方案及产品将分析的力量与Hadoop相结合,释放大数据真正的价值。
Hadoop提供了开放、高效且部署灵活的数据存储方式,而SAS与华为的合作将帮助企业用户发现难以发现的洞察。企业可以基于数据做出科学决策,不再简单依赖直觉人工判断。同时这种合作还让企业使用全量数据进行分析成为可能,真正利用大数据,而非传统的小样本数据。SAS打造了可视化和互动性更高的Hadoop之旅,轻松展现趋势与洞察。SAS大中华区总裁吴辅世先生在谈及此次合作时表示:“我们越来越充分感受到中国企业对于大数据分析应用的迫切需求。华为深耕本地市场多年,在各行业均积累了深厚的客户基础,企业业务发展势头强劲并具有国际化视野,我们非常尊重和看好这样具有远见和洞察的企业。SAS与华为的共识合作将是SAS本地市场实践的重要里程碑。我们将与华为携手,依托Hadoop架构和前沿分析技术,从打造行业首选的大数据分析平台出发,持续创新,实现我们共同的社会责任。”
“大数据的应用为企业带来了业务数据化和数据业务化的新机遇,让数据来提升企业的业务效率。企业大数据应用有两个最基本的东西,一是高效的分布式处理引擎,另一个是企业的业务模型,华为大数据平台FusionInsight和SAS的业务模型是天然的优势互补,两者相加帮助企业轻松驯服任何形式的数据,将其转化为业务的价值。”华为IT产品线大数据领域总经理朱照生说道,“SAS公司是全球商业分析领域的领导者,相信我们双方的合作,可以帮助更多的中国企业用好大数据,产生实实在在的业务价值。”
FusionInsight:大数据融合与洞察
FusionInsight分析平台是SAS与华为合作的第一张答卷。FusionInsight是基于Hadoop架构的集大数据存储、查询、分析功能为一体的企业级平台,帮助企业快速构建海量数据信息处理系统。该平台包括海量数据引擎FusionInsight HD和实时数据处理引擎FusionInsight Stream两个核心组件,能够对高达百万维度的数据进行全量建模,进行实时分析和挖掘。华为与SAS在FusionInsight的研发、渠道拓展和市场营销方面展开合作。基于Hadoop框架上的SAS分析应用,FusionInsight在企业的精准营销、实时决策、客户维系、数据开放等各种应用场景提供全面的技术保障。
FusionInsight面向多个行业,可以在金融、通信、交通、公共安全等多个领域发挥流式事件实时处理优势,进行实时分析和决策。迄今为止,FusionInsight已在全球拓展了100多个大数据项目,有40多个项目已经在交付,其中10多个已经在商用。目前的主要应用领域为电信、金融、科研、公安和政府,客户包括中国工商银行、中国建设银行、招商银行、平安银行、上海移动,上海联通等。
中国工商银行运营团队通过华为FusionInsight大数据构建其日志分析平台,为SAS数据统计分析提供更精准的数据源,最终,在逸贷产品上锁定目标客户,建立准入评分标准,并根据评分提供不同额度的贷款;对商友客户进行评级,根据不同级别的客户进行不同的服务,并建立移动APP为客户提供随时随地的服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29