京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据技术的发展历程及其演化趋势
最早提出词汇“Big Data”的是2011年麦肯锡全球研究院发布的《大数据:下一个创新、竞争和生产力的前沿》研究报告。之后,经Gartner技术炒作曲线和2012年维克托·舍恩伯格《大数据时代:生活、工作与思维的大变革》的宣传推广,大数据概念开始风靡全球。
基于Web of Science数据库中1994年后涉及大数据概念的4495篇文献,采用Citespace知识图谱工具,通过热点关键词和高被引文献分析,能够勾勒出大数据技术从萌芽到成熟的发展历程。
上世纪90年代至本世纪初,是大数据发展的萌芽期,处于数据挖掘技术阶段。随着数据挖掘理论和数据库技术的逐步成熟,一批商业智能工具和知识管理技术开始被应用,如数据仓库、专家系统、知识管理系统等。此时,对于大数据的研究主要集中于“Algorithms”(算法)、“Model”(模型)、“Patterns”(模式)、“Identification”(识别)等热点关键词。
大数据发展的突破期是2003至2006年,处于围绕非结构化数据自由探索阶段。非结构化数据的爆发带动大数据技术的快速突破,以2004年Facebook创立为标志,社交网络的流行直接导致大量非结构化数据的涌现,而传统处理方法难以应对。此时的热点关键词较为分散,包括了“Systems”(系统)、“Networks”(网络)、“Evolution”(演化)等,高被引文献也很少,说明学术界、企业界正从多角度对数据处理系统、数据库架构进行重新思考,且尚未形成共识。
2006至2009年,大数据技术形成并行运算与分布式系统,为大数据发展的成熟期。Jeff Dean在BigTable基础上开发了Spanner数据库(2009)。此阶段,大数据研究的热点关键词再次趋于集中,聚焦“Performance”(性能)、“CloudComputing”(云计算)、“MapReduce”(大规模数据集并行运算算法)、“Hadoop”(开源分布式系统基础架构)等。
2010年以来,随着智能手机的应用日益广泛,数据的碎片化、分布式、流媒体特征更加明显,移动数据急剧增长。
近年来大数据不断地向社会各行各业渗透,使得大数据的技术领域和行业边界愈来愈模糊和变动不居,应用创新已超越技术本身更受到青睐。大数据技术可以为每一个领域带来变革性影响,并且正在成为各行各业颠覆性创新的原动力和助推器。
2013年5月,麦肯锡全球研究所(McKinsey Global Institute)发布了一份名为《颠覆性技术:技术进步改变生活、商业和全球经济》的研究报告。报告确认的未来12种新兴技术,有望在2025年带来14万亿至33万亿美元的经济效益。令人惊讶的是,最为热门的大数据技术却未被列入其中。麦肯锡专门解释称,大数据已成为这些可能改变世界格局的12项技术中许多技术的基石,包括移动互联网、知识工作自动化、物联网、云计算、先进机器人、自动汽车、基因组学等都少不了大数据应用。
2014年5月,美国白宫发布了2014年全球“大数据”白皮书的研究报告《大数据:抓住机遇、守护价值》。报告鼓励使用数据以推动社会进步,特别是在市场与现有的机构并未以其他方式来支持这种进步的领域;同时,也需要相应的框架、结构与研究,来帮助保护美国人对于保护个人隐私、确保公平或是防止歧视的坚定信仰。2014年4月,世界经济论坛也以“大数据的回报与风险”的相近主题发布了《全球信息技术报告(第13版)》。报告认为,在未来几年中针对各种信息通信技术的政策甚至会显得更加重要。在接下来将对数据保密和网络管制等议题展开积极讨论。全球大数据产业的日趋活跃,技术演进和应用创新的加速发展,使各国政府逐渐认识到大数据在推动经济发展、改善公共服务,增进人民福祉,乃至保障国家安全方面的重大意义。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22