
大数据 大政务_数据分析师
政府信息化方面,美国、日本、韩国、新加坡,以及一些欧洲国家,已经早于我们做了很多的实践和尝试。
1993年日本政府开始研究政府信息化和开放的计划,1994年把整个的信息化战略分成了三个阶段、横跨二十年来实施,2015年是最后一年。从战略实施来讲,顶层设计是日本的大数据战略能够快速有效实施很重要的一个原因。日本的大数据由日本内阁和总务省ICT基本战略委员会牵头,渗透到日本的各个部门、各个行业。
日本大数据在实施过程中有三个特点:第一,数据开放。政府牵头,各个企业、各个产业相关的角色都参与进来,大家共同来推进数据的开放和应用。第二,数据流通。开放是一个静态的过程,数据流通指的是整个数据在国家系统里流通,构建了一个生态,渗透到国民经济和社会的方方面面。第三,创新应用。数据开放要设计很多的商业模式,应用到各个领域,包括交通、医疗、教育、民生。政府和社会各界都参与进来,有持续的盈利模式,可以持续运行下去。
日本的过程分三个阶段:第一,e-Japan,要使日本全国各个地方的民众都能够上网;第二,u-Japan,实现了无处不在,所有的信息都能够采集上来。第三,i-Japan,数据流通,产生很多的创新应用,渗透到国民经济中,不光服务政府本身,还要服务整个经济社会,推动经济的发展。
作者05到08年在日本工作,是u-Japan的实施人之一,经历了u-Japan的整个过程。第一,战略目标明确,就是实现任何时间、任何地点、无处不在,无时不有。任何一个角落都能够实现信息覆盖。2008年日本实现了99%的无处不在的信息覆盖。第二,总务省牵头,各级地方政府、各个行业代表,相关产业链的企业都加入,共同制订从基础设施到数据搜集、到上层应用的标准,运行效率非常高。第三,因地制宜、因人制宜。有一个城市叫岭南,经济和文化比较发达,信息化建设在日本属于中上水平,文化很深远,被称为小京都。它需要的应用,一是服务于民生,提升生活的便利性,包括公共交通、公共医疗。二是服务于经济,促进文化旅游。三是建立了一个通道,政府直接把公共信息发布到每一个人、每一个家庭。另外一个城市叫敦赫,是剩下的1%。自然环境非常恶劣,常年有雪,经常封路。它要解决的是基础设施、自然灾害预告和教育。我们针对不同城市的特点,设计u-Japan方案。
现在日本已进入到i-Japan的最后一年。i-Japan阶段的目标是让数字信息技术像空气和水一样融入到每一个角落,向经济技术渗透,助力日本经济发展。这个阶段更注重应用,不光应用到老百姓,还应用到企业、经济,最后实现高度信息化社会。
日本的经验说明,顶层设计、分阶段实施目标战略、数据流通渗透形成生态以及持续的商业模式使信息化的工作持续的运行都很重要。然而日本也有一些弊端,受岛国文化的影响是自成体系且封闭,标准也是自成体系,没办法在全球推广。
美国也是1993年克林顿政府开始,倡导政府信息化、政府信息公开。2012年奥巴马提出大数据战略以后,把这个战略推向高潮。美国顶层设计由白宫直接牵头,各个部委参与到计划中,分阶段实施。美国和日本的战略相比有几个可以借鉴的地方:
第一,美国非常重视大数据立法。什么样的数据要开放,什么样的信息是自由的,有很多立法。第二,更注重数据标准,不光应用于自己国家,还推广到全球,提升了美国在大数据领域的影响力。我们可以依托现在的一带一路战略,制订一套标准,至少在一带一路国家推广我们的标准,增强产业影响力和国家影响力。第三,企业参与,美国比日本的企业参与更多。惠普、IBM、谷歌等等企业都参与到了政府的大数据战略里面。不光促进了政府的发展,还促进了大数据产业的发展,美国在这三点上做的比日本更好一些。
美国和日本相对来说走的比较靠前,现在整个产业信息化程度已经非常高。其他国家,包括韩国、新加坡、法国跟中国基本上是相同水平,我们加速发展,有理由做的更好。
我们需要从各国大数据战略中学习其顶层战略、政企结合以及大数据应用。然而,数据孤岛如何打破,技术平台如何打通、在数据开放和隐私立法的权衡,以及大数据不光应用到企业,还要应用到政府的决策管理中都是我们现在面临的挑战。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29