京公网安备 11010802034615号
经营许可证编号:京B2-20210330
提高延误航班索赔成功率?AirHelp利用的是大数据整合信息和自动化流程
AirHelp这家公司我们介绍过,是 Y Combinator Winter 2014 的毕业团队。他们帮助遭遇飞机延误的乘客向航空公司索赔,成功后收取25%的佣金作为回报。如果遇到飞机延误的话,你会考虑索赔吗?
通常情况下,遭遇航班延误的乘客都不会选择向航空公司索赔,一是由于信息不对称,无法得到航班具体延误原因和证据,使得乘客在索赔过程中处于劣势;二是法律程序复杂,大多数人会在没有把握真的要到钱的前提下,选择放弃。
为了解决这两个问题,过去两年,AirHelp耗费很多精力建立了一个及时更新的数据库,包含全球所有航班及其延误原因,补足用户对于飞机具体情况的盲点。获得航班的状况并不难,可以购买一些数据,但如何将与影响飞机状况的所有的数据点综合起来分析是比较困难的,比如某个具体故障、天气影响、其他航班的影响、机场罢工、政治事件等。这些信息的整合,非常有助于改善乘客与航空公司之间的信息不对称,提高索赔的成功率。
同时,AirHelp尽可能将索赔过程自动化,节约这中间耗费的成本。他们看待整个问题的角度是:AirHelp为航空业提供了一种依托于大数据的标准判断和流程简化工具,这种工具航空公司不大可能主动去开发,法律制定者也不会,由第三方公司去做最为合理。有了这个工具,乘客不用去管那些复杂流程,也无需承担风险,最后能够获得大部分的赔偿金;另一方面,对航空公司而言,AirHelp甚至可以是一个过滤器,将一部分的无效索赔挡在门外。
以此类推,这种大数据分析判断、简化流程的工具在其他行业也适用,尤其涉及到法律中一些普通人不熟悉、流程又比较固定的业务。除了可以扩展到其他大规模交通运输业以外,还有与气象、土壤、人为因素等综合数据相关的农业保险等。
最近,AirHelp新增了邮件扫描功能,如上图所示,从乘客三年内的乘机记录中挑出有索赔空间的班次,进行索赔。原先,乘客必须在其网站上输入出发地和目的地名称、航空公司和航班号码,AirHelp根据该班机的延误原因加以判断,给出预估索赔成功率。
目前,AirHelp已登陆17个国家,曾帮助超过14万来自世界各地的乘客拿回属于他们的延误赔偿金。除了单纯通过市场营销获得的C端用户,AirHelp还与一些旅行代理公司合作,通过邮件等向顾客推荐他们的服务。
根据德国区的AirHelp工作人员介绍,在欧洲地区,AirHelp其实有一些成立很早的竞争对手,如由律师组建的索赔代理公司,收取费用比例通常在赔款的18%到35%之间。他们case by case的模式比较难规模化,如果在各个国家都开分部,成本过高很难维持现金流。
在AirHelp团队内有一个15人的律师团队,负责代理目前这17个国家境内的法律案件。通常,航空公司在处理这类延误索赔是有一套成熟的流程的,在法律体系完善的国家,法律也无疑会保护消费者的权益。而如果航空公司拒绝索赔,就会被AirHelp告上法庭。
但对于AirHelp而言,实现迅速扩张还是有一定的难度。根据CMO Nicolas Michaelsen的介绍,下一步,AirHelp正在计划进入巴西和中国市场,比如正在与国内的几家旅行社谈合作事宜。除了营销策略上的本地化外,法律的差异性可能是另一个问题,这要求他们的律师团队对当地航空法和消费者权益保护有丰富的经验。为此,AirHelp正在开发一项新功能,主要是针对不同地区的法律,推出更加本地化的解决方案,将会在今年年末推出,具体的细节负责人拒绝披露。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06