
物流业的大数据何时不再是口号
(文章来源:长风网)
早上七点,旭日东升,某某物流公司已经开始了工作,今天的任务是在11点之前给8家公司配送货物。
从货物出库,选择车辆和司机、装货只花了半个小时,因为手持终端可以让仓管员在偌大的仓库中准备找到货物,内部系统根据之前的数据统计和分析,推荐出性能良好、载货情况合适的车辆和精神状态良好的司机,连装货顺序系统也帮规划好。
虽然是上班早高峰,但系统推荐了一条合理的路线,避开了拥堵路段,按照往常习惯,司机会先去A公司,但系统预测出所需货物的公司近日接待情况欠佳,需要等 候半个小时才能收货,司机毫不犹豫遵循系统的建议先去了B公司。途中,车辆忽然停了下来,原来它探测到20米外有一个滚动的皮球,接着便冲出一个小孩,原 来车辆已经预测出其中的危险……
上述是小编对未来物流配送场景的构想,从物流公司接收到配送任务、货物出库、安排车辆和司机、装车、出行路线、避开危险等这一系列的行为中,都离不开大数 据技术的支撑,通过海量数据的收集、存储、转化、预测等,最后得出科学的、快捷的、可靠的数据分析与建议,大数据在物流行业的使用可达到降低成本、提高效 益的目的。未来,大数据在物流行业的普及应用或许正如小编所想吧。
大数据已经炒烂,物流行业使用大数据是否得心应手?
大数据这个概念已经提出来好几年,曾一度被炒作至顶峰,众多企业扎堆推出大数据解决方案,资金、人力、关注度持续上升。近两年,大数据话题转向冷却,但是 大数据分析的价值会继续下去,企业关注的重点应该是如何采取正确的策略、流程和方法从大数据分析中获得价值。在这样的大环境下,物流企业应该如何去真正把 握大数据价值,实现跨越式发展?
马云的菜鸟网络可以说是顺应大数据时代应运而生的,为打造物流大数据平台,菜鸟网络与国内物流快递企业合作,进一步开放彼此数据,联合打造国内首家物流大 数据分享平台,平台内容涉及云计算、信息产品、信息安全等多个方面,未来可实现快递市场分析、质量指数服务、客户挖掘、数据预测等功能。还有各式各类的云 物流平台的涌现,货运APP、车联网的诞生,这都是互联网和大数据作用之下的产物,不管是数据的采集、优化的方式、服务内容的选择还是服务的精准性,都离 不开大数据。
宽带资本基金董事长田溯宁曾经表示,3-5年内会看到大数据在各个方面的应用。然而在物流行业的应用是否还停留在起步阶段?物流市场的预测、物流中心的选 址、配送路线的优化等等是否已经真正应用了大数据技术?小编根据物流各界的反应以及人们的切身感受来总结,发现大数据的概念与落地存在相当的距离。现实 中,一些物流公司的产品打着大数据的旗号进入市场,强调自己是做大数据的,但其实他们的数据分析能力惨不忍睹,存在招摇撞骗的嫌疑。北大教授王汉生就说 过:大数据更像是一个口号,一种公共宣传的需要。我们都知道大数据好用,但是理想很丰满,现实很骨干,怎么来,怎么用依然还没弄清楚,大数据不过是被人不 断神化!
物流行业挖掘大数据宝藏有何难题?
大数据是金矿银矿,但不是金山银山,它是需要技术挖掘的,这些巨大的商业价值在挖掘的过程中也面临着数据采集、质量控制、技术转化、管理政策等诸多方面的挑战。怎样获取这些大数据是一个问题,需在资金投入、研发团队打造方面的决心和魄力。
1、传统思维的禁锢。大数据首先引领的是思维的变革,再到技术的变革,但我国物流业相对发达国家来说比较传统,从业人员的整体素质不高,企业高层对大数据的重视程度不够,思维不够开拓,从而影响技术的变革。
2、采集困难。海量的数据需要高精准的硬件设备采集,但我国物流行业上所运用的硬件设备相对落后,加上数据变化快和有效期短的特点,数据质量和有效性难以保证。
3、数据共享困难。大数据需要数以万计的数据作为支撑,并不是一个公司就能解决的问题,物流行业的散、小、乱、差并不利用数据的融通,反复号召的联盟组织也是联而不盟的状态。
4、没有核心技术人才。大数据本身的多样性、复杂性增加了大数据在处理和管理上的难度,所有,专业的数据管理人员是关键,在物流企业既懂得数据挖掘、数据分析技术,又熟悉物流企业运营的复合型技术人才尤其难得。此外,数据的开发和隐私也是应该权衡的问题。
5、数据的转化是挑战。数据的呈现形式的复杂多样的,文本、图片、视频等非结构化数据需要转化为结构化数据,在物流企业的运营过程中,非结构化数据的存储必须要先转化为结构化的数据才能够存储,因此,引进先进的数据转化技术是物流企业数据质量的保证。
总之,大数据已经在物流企业渗透,引起物流企业普遍关注,大数据所隐藏信息价值不会轻易袒露,高喊口号之外需要物流企业的决心和魄力去挖掘。当然,我们相信,随着思维的转变、技术的进步,管理的变革,大数据一定有实质性变化,行动终会有成果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16