
物流业的大数据何时不再是口号
(文章来源:长风网)
早上七点,旭日东升,某某物流公司已经开始了工作,今天的任务是在11点之前给8家公司配送货物。
从货物出库,选择车辆和司机、装货只花了半个小时,因为手持终端可以让仓管员在偌大的仓库中准备找到货物,内部系统根据之前的数据统计和分析,推荐出性能良好、载货情况合适的车辆和精神状态良好的司机,连装货顺序系统也帮规划好。
虽然是上班早高峰,但系统推荐了一条合理的路线,避开了拥堵路段,按照往常习惯,司机会先去A公司,但系统预测出所需货物的公司近日接待情况欠佳,需要等 候半个小时才能收货,司机毫不犹豫遵循系统的建议先去了B公司。途中,车辆忽然停了下来,原来它探测到20米外有一个滚动的皮球,接着便冲出一个小孩,原 来车辆已经预测出其中的危险……
上述是小编对未来物流配送场景的构想,从物流公司接收到配送任务、货物出库、安排车辆和司机、装车、出行路线、避开危险等这一系列的行为中,都离不开大数 据技术的支撑,通过海量数据的收集、存储、转化、预测等,最后得出科学的、快捷的、可靠的数据分析与建议,大数据在物流行业的使用可达到降低成本、提高效 益的目的。未来,大数据在物流行业的普及应用或许正如小编所想吧。
大数据已经炒烂,物流行业使用大数据是否得心应手?
大数据这个概念已经提出来好几年,曾一度被炒作至顶峰,众多企业扎堆推出大数据解决方案,资金、人力、关注度持续上升。近两年,大数据话题转向冷却,但是 大数据分析的价值会继续下去,企业关注的重点应该是如何采取正确的策略、流程和方法从大数据分析中获得价值。在这样的大环境下,物流企业应该如何去真正把 握大数据价值,实现跨越式发展?
马云的菜鸟网络可以说是顺应大数据时代应运而生的,为打造物流大数据平台,菜鸟网络与国内物流快递企业合作,进一步开放彼此数据,联合打造国内首家物流大 数据分享平台,平台内容涉及云计算、信息产品、信息安全等多个方面,未来可实现快递市场分析、质量指数服务、客户挖掘、数据预测等功能。还有各式各类的云 物流平台的涌现,货运APP、车联网的诞生,这都是互联网和大数据作用之下的产物,不管是数据的采集、优化的方式、服务内容的选择还是服务的精准性,都离 不开大数据。
宽带资本基金董事长田溯宁曾经表示,3-5年内会看到大数据在各个方面的应用。然而在物流行业的应用是否还停留在起步阶段?物流市场的预测、物流中心的选 址、配送路线的优化等等是否已经真正应用了大数据技术?小编根据物流各界的反应以及人们的切身感受来总结,发现大数据的概念与落地存在相当的距离。现实 中,一些物流公司的产品打着大数据的旗号进入市场,强调自己是做大数据的,但其实他们的数据分析能力惨不忍睹,存在招摇撞骗的嫌疑。北大教授王汉生就说 过:大数据更像是一个口号,一种公共宣传的需要。我们都知道大数据好用,但是理想很丰满,现实很骨干,怎么来,怎么用依然还没弄清楚,大数据不过是被人不 断神化!
物流行业挖掘大数据宝藏有何难题?
大数据是金矿银矿,但不是金山银山,它是需要技术挖掘的,这些巨大的商业价值在挖掘的过程中也面临着数据采集、质量控制、技术转化、管理政策等诸多方面的挑战。怎样获取这些大数据是一个问题,需在资金投入、研发团队打造方面的决心和魄力。
1、传统思维的禁锢。大数据首先引领的是思维的变革,再到技术的变革,但我国物流业相对发达国家来说比较传统,从业人员的整体素质不高,企业高层对大数据的重视程度不够,思维不够开拓,从而影响技术的变革。
2、采集困难。海量的数据需要高精准的硬件设备采集,但我国物流行业上所运用的硬件设备相对落后,加上数据变化快和有效期短的特点,数据质量和有效性难以保证。
3、数据共享困难。大数据需要数以万计的数据作为支撑,并不是一个公司就能解决的问题,物流行业的散、小、乱、差并不利用数据的融通,反复号召的联盟组织也是联而不盟的状态。
4、没有核心技术人才。大数据本身的多样性、复杂性增加了大数据在处理和管理上的难度,所有,专业的数据管理人员是关键,在物流企业既懂得数据挖掘、数据分析技术,又熟悉物流企业运营的复合型技术人才尤其难得。此外,数据的开发和隐私也是应该权衡的问题。
5、数据的转化是挑战。数据的呈现形式的复杂多样的,文本、图片、视频等非结构化数据需要转化为结构化数据,在物流企业的运营过程中,非结构化数据的存储必须要先转化为结构化的数据才能够存储,因此,引进先进的数据转化技术是物流企业数据质量的保证。
总之,大数据已经在物流企业渗透,引起物流企业普遍关注,大数据所隐藏信息价值不会轻易袒露,高喊口号之外需要物流企业的决心和魄力去挖掘。当然,我们相信,随着思维的转变、技术的进步,管理的变革,大数据一定有实质性变化,行动终会有成果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17