京公网安备 11010802034615号
经营许可证编号:京B2-20210330
物流业的大数据何时不再是口号
(文章来源:长风网)
早上七点,旭日东升,某某物流公司已经开始了工作,今天的任务是在11点之前给8家公司配送货物。
从货物出库,选择车辆和司机、装货只花了半个小时,因为手持终端可以让仓管员在偌大的仓库中准备找到货物,内部系统根据之前的数据统计和分析,推荐出性能良好、载货情况合适的车辆和精神状态良好的司机,连装货顺序系统也帮规划好。
虽然是上班早高峰,但系统推荐了一条合理的路线,避开了拥堵路段,按照往常习惯,司机会先去A公司,但系统预测出所需货物的公司近日接待情况欠佳,需要等 候半个小时才能收货,司机毫不犹豫遵循系统的建议先去了B公司。途中,车辆忽然停了下来,原来它探测到20米外有一个滚动的皮球,接着便冲出一个小孩,原 来车辆已经预测出其中的危险……
上述是小编对未来物流配送场景的构想,从物流公司接收到配送任务、货物出库、安排车辆和司机、装车、出行路线、避开危险等这一系列的行为中,都离不开大数 据技术的支撑,通过海量数据的收集、存储、转化、预测等,最后得出科学的、快捷的、可靠的数据分析与建议,大数据在物流行业的使用可达到降低成本、提高效 益的目的。未来,大数据在物流行业的普及应用或许正如小编所想吧。
大数据已经炒烂,物流行业使用大数据是否得心应手?
大数据这个概念已经提出来好几年,曾一度被炒作至顶峰,众多企业扎堆推出大数据解决方案,资金、人力、关注度持续上升。近两年,大数据话题转向冷却,但是 大数据分析的价值会继续下去,企业关注的重点应该是如何采取正确的策略、流程和方法从大数据分析中获得价值。在这样的大环境下,物流企业应该如何去真正把 握大数据价值,实现跨越式发展?
马云的菜鸟网络可以说是顺应大数据时代应运而生的,为打造物流大数据平台,菜鸟网络与国内物流快递企业合作,进一步开放彼此数据,联合打造国内首家物流大 数据分享平台,平台内容涉及云计算、信息产品、信息安全等多个方面,未来可实现快递市场分析、质量指数服务、客户挖掘、数据预测等功能。还有各式各类的云 物流平台的涌现,货运APP、车联网的诞生,这都是互联网和大数据作用之下的产物,不管是数据的采集、优化的方式、服务内容的选择还是服务的精准性,都离 不开大数据。
宽带资本基金董事长田溯宁曾经表示,3-5年内会看到大数据在各个方面的应用。然而在物流行业的应用是否还停留在起步阶段?物流市场的预测、物流中心的选 址、配送路线的优化等等是否已经真正应用了大数据技术?小编根据物流各界的反应以及人们的切身感受来总结,发现大数据的概念与落地存在相当的距离。现实 中,一些物流公司的产品打着大数据的旗号进入市场,强调自己是做大数据的,但其实他们的数据分析能力惨不忍睹,存在招摇撞骗的嫌疑。北大教授王汉生就说 过:大数据更像是一个口号,一种公共宣传的需要。我们都知道大数据好用,但是理想很丰满,现实很骨干,怎么来,怎么用依然还没弄清楚,大数据不过是被人不 断神化!
物流行业挖掘大数据宝藏有何难题?
大数据是金矿银矿,但不是金山银山,它是需要技术挖掘的,这些巨大的商业价值在挖掘的过程中也面临着数据采集、质量控制、技术转化、管理政策等诸多方面的挑战。怎样获取这些大数据是一个问题,需在资金投入、研发团队打造方面的决心和魄力。
1、传统思维的禁锢。大数据首先引领的是思维的变革,再到技术的变革,但我国物流业相对发达国家来说比较传统,从业人员的整体素质不高,企业高层对大数据的重视程度不够,思维不够开拓,从而影响技术的变革。
2、采集困难。海量的数据需要高精准的硬件设备采集,但我国物流行业上所运用的硬件设备相对落后,加上数据变化快和有效期短的特点,数据质量和有效性难以保证。
3、数据共享困难。大数据需要数以万计的数据作为支撑,并不是一个公司就能解决的问题,物流行业的散、小、乱、差并不利用数据的融通,反复号召的联盟组织也是联而不盟的状态。
4、没有核心技术人才。大数据本身的多样性、复杂性增加了大数据在处理和管理上的难度,所有,专业的数据管理人员是关键,在物流企业既懂得数据挖掘、数据分析技术,又熟悉物流企业运营的复合型技术人才尤其难得。此外,数据的开发和隐私也是应该权衡的问题。
5、数据的转化是挑战。数据的呈现形式的复杂多样的,文本、图片、视频等非结构化数据需要转化为结构化数据,在物流企业的运营过程中,非结构化数据的存储必须要先转化为结构化的数据才能够存储,因此,引进先进的数据转化技术是物流企业数据质量的保证。
总之,大数据已经在物流企业渗透,引起物流企业普遍关注,大数据所隐藏信息价值不会轻易袒露,高喊口号之外需要物流企业的决心和魄力去挖掘。当然,我们相信,随着思维的转变、技术的进步,管理的变革,大数据一定有实质性变化,行动终会有成果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31