京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析是很多人推崇的产品需求制定方法,用数据说话已经渐渐变成产品经理的至理名言,但不能迷信数据,毕竟数据的真实性、客观性、全面性不好保证,而且,数据和人的大脑总是差一些“灵气”。
问:怎么评价产品经理拿数据说话这回事?如何做数据分析?
现在PM动不动就拿数据说话,找RD跑数据,有些数据是肯定必要的,有些数据是可要可不要的,比如对于某项目,PM凭经验可说4级以上的用户可xxx,这时候会有人跳出来问,为什么不是3级、5级?拿出数据来。 实际上真看了数据又能看出什么呢?看完后无非是再次验证了4级,而且看了数据后主管判断还是PM来下的。 再比如有的功能是肯定要上的,但领导会说,调研一下有没有必要,评估数据搞半个月,评估的结果是:可做。 实际上,该功能整个平台的用户都希望做,是没有必要耗费人力评估的,只要做就可以了。 很多数据和评估是必要的,但有些很形式化,请问有意义吗?
数据分析是一种靠谱的产品研究方法, 这玩意有很多误区, 也不能迷信, 最终到头来还是要人来做决策
1.忽略沉默的用户
二战时英国空军为了降低飞机的损失,决定给飞机的机身进行装甲加固。由于当时条件所限,只能用装甲加固飞机上的少数部位。他们对执行完轰炸任务返航的飞机进行仔细的观察、分析、统计。发现大多数的弹孔,都集中在飞机的机翼上;只有少数弹孔位于驾驶舱。从数据上说, 加固机翼的性价比最高. 但实际情况缺恰恰相反, 驾驶舱才是最应加固的地方, 因为驾驶舱被击中的飞机几乎都没飞回来.
"发声"的数据是最好获取的, 但如果没把这些沉默的数据考虑进来, 那么这种数据分析是不靠谱的. 所以除了数据的结果, 还得尝试解读这些数据. 而解读数据就完全依赖人了.
2.把沉默用户当做支持和反对的中间态
u=3965659086,275639697&fm=23&gp=0
2家网站A和B,都经营类似的业务,都有稳定的用户群。它们都进行了类似的网站界面改版。改版之后,网站A没有得到用户的赞扬,反而遭到很多用户的臭骂;而网站B既没有用户夸它,也没有用户骂它。如果从数据来看, 应该是网站B的改版相对更成功, 因为没有用户表达不满。但事实并非如此。网站A虽然遭到很多用户痛骂,但说明还有很多用户在乎它;对于网站B,用户对它已经不关心它了.
网站A指的是Facebook,网站B是微软旗下的Live Space。
3.把数据作为决策的唯一标准
通常认为数据分析指导工作是一种高性价比的做法, 不容易犯错, 对于代表资方的管理层来说, 比起依赖于人的决策, 依赖于数据的决策似乎更稳健.
这种决策在从0.5向0.8的产品改进上, 可能是有效的. 因为一个已有的产品, 数据就摆在那. 100个用户50个访问超时, 解决了这个问题, 就提升了50%的效果.
但对于从0到0.1的新产品上, 由于数据很难获取, 需要花大力气在获取模拟数据上. 往往是用一周时间去想明白一个做两个小时的产品该不该做的问题. 而且模拟的结果还和最终实际相差很远.
A/B test或是原型系统, 先做出来, 再去验证, 在一些场合下比先拿数据要有效的多.
4.认为数据是绝对客观的
为了减少内耗, 往往依赖于数据来做决断. 我一直认为数据本身是带有主观性的, 完全客观的数据是没有的. 数据的获取方法, 数据的解读方法, 数据的统计方法, 都是人的决策. 一份数据拿出两个相反的结论来也不是没有可能. 即使主观上没有偏向性, 也受限于方法和视野.
决策上最终起作用的还是人不是数据. 虽然人有那么多的不确定性, 还可能出现争论, 扯皮, 不敢承担责任.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01