
大数据时代中求生存:9个必杀绝技杀进大数据市场
拜网络普及与科技进步之赐,大数据的热潮越烧越烈,许多处理数据分析与管理的技术因应而出,迎来了大数据的时代。要能在这大数据市场中杀出一条血路,以下这 9 个必杀绝技你一定要学起来。
1) Apache Hadoop 黄色小象帮手
Hadoop 的两大核心功能 —— 储存及处理数据所用到的分散式档案系统 HDFS 跟 MapReduce 平行运算架构。
基于 Hadoop 处理大数据的种种优势,像是解决了档案存放、系统扩张、数据处理及备份等问题,因此 Hadoop 被广泛应用于大数据储存和大数据分析,成为大数据的主流技术。
在近几年内,丛集运算在商用性与非商用性的领域也越来越普遍且应用的相当广泛,2014年无庸置疑成为了 Hadoop 的丰收年,对于 Hadoop 生态系例如 Flume, Oozie, Hive, Pig, HBase, YARN 等技能的市场需求也逐渐提高。
2) 大数据黑马:Apache Spark
如果 Hadoop 是大数据市场里的老大哥,那 Spark 则是具有超凡潜力的一匹黑马!
Spark 是一个用途广泛的丛集运算引擎,简单来说就是一个能让原本使用 Hadoop 来处理及分析数据的系统快 10 到 100 倍的好工具。
由于 Hadoop 分析数据时需要将中间产生的数据存在硬碟中,因此会有读写数据的延迟问题;有别于 Hadoop 的 MapReduce 架构,Spark 使用了「记忆体内运算技术(In-Memory Computing)」,能在数据尚未写入硬碟时,就在记忆体内进行分析运算,号称比原先的 Hadoop 快 100 倍。
去年在数据排序基准竞赛(Sort Benchmark Competition)中,Spark 用 23 分钟完成 100 TB 的数据排序,刷新了原本由 Hadoop 保持的 72 分钟世界记录1。
3) 不只是 SQL:NoSQL
最近几年网络上的数据量开始快速大量成长、数据量与日遽增,为了解决数据库在进行大量数据存取时,所衍生出效能、扩充、维护等问题,近年来业界纷纷舍弃了以结构化查询语言(SQL)为基础的关联式数据库管理系统(RDBMS),改以 NoSQL 数据库来提升效能与扩充弹性。
NoSQL 最早是指「No SQL」,号称不使用 SQL 作为查询语言的数据库系统。但近来则普遍将 NoSQL 视为「Not Only SQL」,也就是「不只是 SQL」的意思,希望结合 SQL 优点并混用关联式数据库和 NoSQL 数据库来达成最佳的储存效果。
在大数据所带动的潮流下,各种不同形态的NoSQL数据库如雨後春笋般窜起,其中 MongoDB 是众多 NoSQL 数据库软体中较为人熟知的一种。
4) 机器学习与数据处理超屌!
在大数据中如何摸索出数据所要表达的意涵、提炼出「数据精华」是非常重要的课题,于是「机器学习(Machine Learning)」与「数据处理(Data Mining)」成为了大数据时代中的重点领域。
机器学习可以从过去收集的数据与经验中,萃取出感兴趣的部份,构造出模型(Model)和规律(Pattern)当作我们参考的基准,对未来进行预测。应用机器学习的方法处理大量数据库的数据则称为「数据处理」(Data Mining),顾名思义,就好比在地球上从一堆粗糙的石头中进行地物处理、寻找有价值的矿脉,数据处理就是从大数据中提取出未知的、有价值的潜在资讯。
机器学习跟数据处理到底有多屌?LinkedIn 之前发表的 2014 年「最热门工作技能」排行榜2,数据处理荣登排行榜第一名这样屌。
5) 统计及量化分析
大数据时代,统计与数据分析是根本中的根本,数学跟统计学则是基础中的基础。数据专家或量化分析师的专业包含了统计学、电脑科学和数学,过去这些人才都抢着要进华尔街工作,但多亏了 带来的风潮,现在各行各业都在寻找拥有量化分析、统计学背景的工程师、数据专家。
如果数学是你的拿手强项,基本上你已经赢在起跑点了,接下来再学习市面上的一些数据分析软体及程式语言,像是 R、SAS、Matlab、SPSS、Stata 等,具备了以上技能,相信要进大数据一行不成问题。
6) 结构化查询语言 SQL
结构化查询语言,简称 SQL,是专门用于关连式数据库的一种查询语言,可以用来定义数据库结构、建立表格、指定栏位型态与长度,也能新增、异动或查询数据。简单来说,SQL 是一种用来从数据库读取与储存数据的电脑语言。
SQL 历经了四十多年的考验仍然在蓬勃发展,虽然 NoSQL (上述第三点)的出现带来了一些影响,但 SQL 仍然主导着市场,并在大数据领域赢得了很多投资与广泛部属。像是 Cloudera 推出了即时查询开源工具 Impala –– 一款用来跑在 Hadoop 架构上的互动 SQL 查询引擎,在这些工具发展下 SQL 在大数据领域中更是历久不衰。
7) 看图说故事:数据视觉化
大数据的重要性与日俱增,不少企业如电子商务、零售业及半导体制造业等,开始广泛运用大数据为公司拟定企业策略,不过并不是人人都是数据专家、数据科学家,如果要让主管跟客户们清楚了解数据背後的意义,那倒不如让他们「一目了然」。
数据视觉化(Data Visualization)是关于数据之视觉表现形式的研究,数据视觉化的技术可以帮助不同背景的工程人员沟通、理解,以达良好的设计与分析结果。市面上已经有许多工具、软体为人们提供这方面的需求,像是Tableau、QlikView 等工具就拥有绝佳的视觉化呈现效果,可以不限数据量、数据形式或主题,透过图像化和便捷的操作介面制作出客制化报表,无需撰写程式就能得到分析结果。
8) 基本程序开发能力
市场分析机构 Wanted Analytics 公布的数据3中,具有数据分析背景的电脑程式开发人员职位正在逐年增加中,2014 年最後四个月就增加了 2000 个相关的新职缺,比起 2013 年同期多出了 337%!
因此,基本程序开发能力也是在这大数据市场中生存的必要条件之一,在数据科学界里,Java、C、Python、Scala 都是十分受欢迎的程式语言。
9) 创造力和问题解决能力
大数据的型态及发展会不断的演化,无论你的程式开发能力有多好、精通多少项数据分析工具,要在大数据时代中活得好、长得壮,创造力(Creativity)和解决问题能力(Problem Solving)的重要性不可忽视,更是以上提到的工具跟技术都无法取代的必杀技!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02