京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代中求生存:9个必杀绝技杀进大数据市场
拜网络普及与科技进步之赐,大数据的热潮越烧越烈,许多处理数据分析与管理的技术因应而出,迎来了大数据的时代。要能在这大数据市场中杀出一条血路,以下这 9 个必杀绝技你一定要学起来。
1) Apache Hadoop 黄色小象帮手
Hadoop 的两大核心功能 —— 储存及处理数据所用到的分散式档案系统 HDFS 跟 MapReduce 平行运算架构。
基于 Hadoop 处理大数据的种种优势,像是解决了档案存放、系统扩张、数据处理及备份等问题,因此 Hadoop 被广泛应用于大数据储存和大数据分析,成为大数据的主流技术。
在近几年内,丛集运算在商用性与非商用性的领域也越来越普遍且应用的相当广泛,2014年无庸置疑成为了 Hadoop 的丰收年,对于 Hadoop 生态系例如 Flume, Oozie, Hive, Pig, HBase, YARN 等技能的市场需求也逐渐提高。
2) 大数据黑马:Apache Spark
如果 Hadoop 是大数据市场里的老大哥,那 Spark 则是具有超凡潜力的一匹黑马!
Spark 是一个用途广泛的丛集运算引擎,简单来说就是一个能让原本使用 Hadoop 来处理及分析数据的系统快 10 到 100 倍的好工具。
由于 Hadoop 分析数据时需要将中间产生的数据存在硬碟中,因此会有读写数据的延迟问题;有别于 Hadoop 的 MapReduce 架构,Spark 使用了「记忆体内运算技术(In-Memory Computing)」,能在数据尚未写入硬碟时,就在记忆体内进行分析运算,号称比原先的 Hadoop 快 100 倍。
去年在数据排序基准竞赛(Sort Benchmark Competition)中,Spark 用 23 分钟完成 100 TB 的数据排序,刷新了原本由 Hadoop 保持的 72 分钟世界记录1。
3) 不只是 SQL:NoSQL
最近几年网络上的数据量开始快速大量成长、数据量与日遽增,为了解决数据库在进行大量数据存取时,所衍生出效能、扩充、维护等问题,近年来业界纷纷舍弃了以结构化查询语言(SQL)为基础的关联式数据库管理系统(RDBMS),改以 NoSQL 数据库来提升效能与扩充弹性。
NoSQL 最早是指「No SQL」,号称不使用 SQL 作为查询语言的数据库系统。但近来则普遍将 NoSQL 视为「Not Only SQL」,也就是「不只是 SQL」的意思,希望结合 SQL 优点并混用关联式数据库和 NoSQL 数据库来达成最佳的储存效果。
在大数据所带动的潮流下,各种不同形态的NoSQL数据库如雨後春笋般窜起,其中 MongoDB 是众多 NoSQL 数据库软体中较为人熟知的一种。
4) 机器学习与数据处理超屌!
在大数据中如何摸索出数据所要表达的意涵、提炼出「数据精华」是非常重要的课题,于是「机器学习(Machine Learning)」与「数据处理(Data Mining)」成为了大数据时代中的重点领域。
机器学习可以从过去收集的数据与经验中,萃取出感兴趣的部份,构造出模型(Model)和规律(Pattern)当作我们参考的基准,对未来进行预测。应用机器学习的方法处理大量数据库的数据则称为「数据处理」(Data Mining),顾名思义,就好比在地球上从一堆粗糙的石头中进行地物处理、寻找有价值的矿脉,数据处理就是从大数据中提取出未知的、有价值的潜在资讯。
机器学习跟数据处理到底有多屌?LinkedIn 之前发表的 2014 年「最热门工作技能」排行榜2,数据处理荣登排行榜第一名这样屌。
5) 统计及量化分析
大数据时代,统计与数据分析是根本中的根本,数学跟统计学则是基础中的基础。数据专家或量化分析师的专业包含了统计学、电脑科学和数学,过去这些人才都抢着要进华尔街工作,但多亏了 带来的风潮,现在各行各业都在寻找拥有量化分析、统计学背景的工程师、数据专家。
如果数学是你的拿手强项,基本上你已经赢在起跑点了,接下来再学习市面上的一些数据分析软体及程式语言,像是 R、SAS、Matlab、SPSS、Stata 等,具备了以上技能,相信要进大数据一行不成问题。
6) 结构化查询语言 SQL
结构化查询语言,简称 SQL,是专门用于关连式数据库的一种查询语言,可以用来定义数据库结构、建立表格、指定栏位型态与长度,也能新增、异动或查询数据。简单来说,SQL 是一种用来从数据库读取与储存数据的电脑语言。
SQL 历经了四十多年的考验仍然在蓬勃发展,虽然 NoSQL (上述第三点)的出现带来了一些影响,但 SQL 仍然主导着市场,并在大数据领域赢得了很多投资与广泛部属。像是 Cloudera 推出了即时查询开源工具 Impala –– 一款用来跑在 Hadoop 架构上的互动 SQL 查询引擎,在这些工具发展下 SQL 在大数据领域中更是历久不衰。
7) 看图说故事:数据视觉化
大数据的重要性与日俱增,不少企业如电子商务、零售业及半导体制造业等,开始广泛运用大数据为公司拟定企业策略,不过并不是人人都是数据专家、数据科学家,如果要让主管跟客户们清楚了解数据背後的意义,那倒不如让他们「一目了然」。
数据视觉化(Data Visualization)是关于数据之视觉表现形式的研究,数据视觉化的技术可以帮助不同背景的工程人员沟通、理解,以达良好的设计与分析结果。市面上已经有许多工具、软体为人们提供这方面的需求,像是Tableau、QlikView 等工具就拥有绝佳的视觉化呈现效果,可以不限数据量、数据形式或主题,透过图像化和便捷的操作介面制作出客制化报表,无需撰写程式就能得到分析结果。
8) 基本程序开发能力
市场分析机构 Wanted Analytics 公布的数据3中,具有数据分析背景的电脑程式开发人员职位正在逐年增加中,2014 年最後四个月就增加了 2000 个相关的新职缺,比起 2013 年同期多出了 337%!
因此,基本程序开发能力也是在这大数据市场中生存的必要条件之一,在数据科学界里,Java、C、Python、Scala 都是十分受欢迎的程式语言。
9) 创造力和问题解决能力
大数据的型态及发展会不断的演化,无论你的程式开发能力有多好、精通多少项数据分析工具,要在大数据时代中活得好、长得壮,创造力(Creativity)和解决问题能力(Problem Solving)的重要性不可忽视,更是以上提到的工具跟技术都无法取代的必杀技!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27