京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据征信显优势:贷款获批率提升3倍 大规模普及有望
业内人士认为,未来无论是用芝麻信用,还是融360的大数据风控服务,5万元以下的小额贷款申请将有可能完全在线化,不再需要人工的审核流程,因而速度将极大地加快。人工审核一般需要一周以上才能放款;纯线上审核可以做到10分钟以内。这将意味着贷款在线化有望得到大规模普及。
除了贷款审批速度实现了突破,贷款获批率也得到显著提升,同一类用户,用抵押物、收入流水证明等粗放式的传统风控方式,贷款获批率在15%左右,而使用大数据征信结合人工操作后获批率可以达到45%以上。
互联网金融搜索平台融360日前宣布,融360与蚂蚁金服旗下的第三方征信机构芝麻信用已经建立了数据上的战略合作。这是融360在今年5月初成功开发和运用“天机”大数据风控系统之后在探索互联网大数据征信实践上的又一进展。
融360负责风控的副总裁李英浩向记者描述了通过大数据征信将使在线小额信贷迅速发展的前景。他说,假如你需要5万元左右的资金短期周转,不必再劳时费力去银行或小贷公司申请了,只需要靠自己常年累月攒下来的信用,凭借第三方征信公司提供的信用分,就可以在融360等在线金融平台上贷款了。而且最快10分钟审批、24小时放款,省时省力省成本。由于大数据风控的运用,未来小额信贷的应用场景将发生极大的变革,将近万亿元的小额信贷市场因此正在成为各大在线金融服务商争夺的潜在市场。
今年年初,央行已印发《关于做好个人征信业务准备工作的通知》,要求芝麻信用管理有限公司、腾讯征信有限公司等8家机构做好个人征信业务的准备工作,准备时间为6个月。业内人士预计,到6月底,经央行批准后,这8家民营机构将有望获得筹建第三方征信机构的资质。
现在融360与芝麻信用建立数据上的战略合作,无疑将有助于双方的优势互补,在开展互联网大数据风控和征信业务实践上取得较快进展。李英浩表示,融360拥有丰富的用户借贷行为数据,结合芝麻信用的征信数据(个人信用数据),使得融360的“天机”大数据风控系统更加高效,对借款人可以很快地计算出放贷金额。
据了解,芝麻信用推出的中国首个个人信用评分“芝麻信用分”,主要接入了阿里巴巴集团的电商数据和蚂蚁金融的互联网金融数据以及公共机构的数据,运用大数据及云计算技术,客观评估并呈现出个人的信用状况。
芝麻信用采用国际上通行的信用评分方法,最低350分、最高950分,这与美国FICO分(300分至850分)相似,分数越高代表个人信用程度越好,违约可能性越低。该服务主要包含了用户信用历史、行为偏好、履约能力、身份特质、人脉关系五个维度。人们在日常生活中点点滴滴的行为,通过长期积累,这些行为轨迹和细节,可以全面反映其信用状况。
统计数据显示,截至2013年底,央行银行个人征信系统中收录有信贷记录的自然人约3.2亿,还不到全国总人口数的1/4,远远满足不了借贷市场的需求,很多没有信用卡或从未跟银行发生借贷关系的人群很难获得信贷服务。而在美国,征信体系的覆盖率已经达到了85%。
商业大数据征信的兴起,将改变这一状况。融360的创始人、CEO叶大清向记者表示,“2015年是互联网征信元年。6月份8家商业征信公司将有望拿到央行颁发的牌照,补充央行征信记录的不足。”他透露,融360正广泛地和国内外各类征信机构洽谈合作,其中一些合作项目已经启动。商业征信数据结合央行征信数据,能够让广大草根人群,例如自由职业者、个体户、小微企业主、学生等人群有机会在线借贷。
芝麻信用相关负责人表示,芝麻信用分主要分为金融和非金融两类应用场景,非金融会在免押(租车、住宿)、后付、证明(签证、交友)、分享经济(比如小猪短租)方面加大投入。而金融类则需要加强同相关借贷数据提供方合作。在线金融搜索平台融360独有的数据源是芝麻信用一个天然的合作伙伴。
据了解,融360过去三年半积累了大量的信贷用户数据,帮助用户成功获取了超过3000亿元贷款。在借款人访问数据、用户申请资质信息、网站行为数据、批贷信息和贷后信息方面拥有强大的优势。
业内人士认为,未来无论是用芝麻信用,还是融360的大数据风控服务,5万元以下的小额贷款申请将有可能完全在线化,不再需要人工的审核流程,因而速度将极大地加快。李英浩介绍说,人工审核一般需要一周以上才能放款,慢的可能两个月;纯线上审核可以做到10分钟以内。这将意味着贷款在线化有望很快得到大规模普及。
据介绍,除了贷款审批速度实现了突破,贷款获批率也得到了显著提升,同一类用户,用抵押物、收入流水证明等粗放式的传统风控方式,贷款获批率在15%左右,而使用大数据征信结合人工操作后获批率可以达到45%以上。至于贷款的逾期率,以12个月违约风险举例,通过“天机”风控模型筛选的用户,逾期率比没有经过筛选的低一半。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12