
(二)传统传播、互联网传播与智能传播的比较
我们可以从信息丰富程度、传播模式、信息公开度、及时性与互动性、商业模式等方面进行比较分析(参见表1)。
第一,在信息丰富程度方面。传统传播适应的时代为信息稀缺时代,在该时代信息相对稀缺,无论是报纸、杂志、广播还是电视,只要内容做得好,就能够吸引用户;互联网传播适应的时代为信息丰裕时代,在该时代信息相对丰富,以门户网站为代表的PC互联网媒体,单纯依靠内容已经难以赚取真金白银;智能传播适应的是信息过载时代,在该时代信息过多过滥,过载的信息带来极大的信息噪音,单纯的内容已经难以吸引用户,这就需要传播者提供针对每个用户的个性化、定制化的信息。
第二,在传播模式方面。传统传播是大众式的传播,即一点对多点、标准化的传播;互联网传播则是多点对多点、全立体的、链式的、病毒式的传播方式;智能传播则是多点对一点式的传播方式,即多个信息源来对应一个用户。
第三,在信息公开度方面。传统传播的信息公开度较低,是精英式的传播;互联网传播则信息公开度较高,实现了信息的高度公开和透明,也在很大程度上打破了信息的不对称性;智能传播则实现了传播者和用户两端的高度公开,实现了信息的对称和透明。
第四,在及时性与互动性方面。传统传播一般滞后于信息,及时性不够,互动性更为缺乏;互联网传播较好地解决了及时性,互动性也有了很大程度的改善;智能传播则在信息和用户两端都实现了及时性和互动性。
第五,在商业模式方面。传统媒体的商业模式为
表1
“二次销售”,即第一次通过发行把传媒产品售卖给用户,进而获得传播功能,第二次再把传播功能售卖给广告主;互联网的商业模式为“免费+收费”,即先通过免费的信息和服务来吸引巨量的用户,然后再通过增值业务向某些用户或者第三方收费;智能传播的商业模式则在互联网的商业模式上,进一步实现智能信息直接收费。
(三)智能传播的核心——基于大数据的智能信息匹配
在信息过载的情况下,存在着多就是少的悖论,即过多过滥的信息与能够满足用户的有效信息极度匮乏之间的矛盾。而要解决这个矛盾,真正满足用户个性化、定制化的信息需求,就必须通过数据挖掘和分析技术,打造基于大数据的信息智能匹配平台,在不断优化用户信息需求的基础上,实现信息和用户需求的智能化匹配。这就要求我们做好如下工作:
第一,打造巨型的云信息服务平台,在该平台上,云集着各式各样的信息,既有文字的,又有音频和视频的,并能实现信息的分类筛选、摘编和深度加工。
第二,打造大型的大数据平台,在该平台上能够通过数据挖掘和分析等方式,实现对读者和受众个性化需求的准确定位和把握。[1]
第三,能够通过技术手段低成本地在信息和受众个性化、定制化的需求之间实现智能化匹配,并能通过各种支付手段,实现智能化信息的收费。目前,一些巨型的信息平台已经形成,如Google、Facebook、亚马逊、百度、新浪、腾讯等,也出现了搜索、筛选、推荐等新技术手段。利用技术手段实现精准信息和读者需求的智能匹配进而实现信息的收费将仅是个时间问题。例如,亚马逊通过自己研发的被业界称之为“鬼打墙式的推荐”的精准推荐系统每秒卖出的商品达72.9件,这种精准推荐系统就是跟踪客户的所有消费习惯,不断进行优化。Google和百度利用搜索和筛选手段在一定程度上实现了读者的主动信息需求,而亚马逊等利用推荐手段也在一定程度上满足了读者的被动信息需求,而基于巨型平台的社会引擎将能够实现精准信息和读者需求的智能匹配。
目前,在国内,互联网三巨头BAT(百度、阿里、腾讯)已经在大数据和智能传播方面打下了坚实的基础,这也给其带来了丰厚的收入。例如,阿里巴巴围绕大数据打造出了巨型的信息系统,其广告收入从2012年的98.04亿元高速增长到2014年的297.29亿元。
(四)传媒业大数据实践误区
当前,传媒业虽然高度重视大数据,但是在大数据实践中仍存在多种误区。
第一,依然秉持“内容为王”理念。正如上文所述,智能传播的关键是智能信息匹配平台,单纯的内容已经难以为继,但是很多传统媒体依然单纯从内容上发力。[2]
第二,认为大数据仅仅是工具。很多传统媒体仅仅把大数据当成工具和手段,而没有把大数据当成传媒业的底层架构和标配,这必然导致其在发展大数据的过程中变形。
第三,误把数字化当成数据化。很多传统媒体认为,只要把之前的用户资料和内容资源从此前的纸质版转为数字版就实现了数据化,其实这仅仅是数据化的最浅层工作。
第四,误把新闻可视化当成数据化。很多传统媒体仅仅把数据化当成数据新闻或者可视化新闻,其实数据化是整个系统的数据化,单纯的数据新闻或者可视化新闻都远远解决不了实际问题。
四、智能传播的盈利模式
第一,信息服务收费。由于信息智能匹配能够给用户节省大量的时间,用户必然会对其收到的个性化、定制化信息服务付费,而可以预测,这一块将会有上千亿元的市场规模。
第二,广告。未来,基于大数据的广告能够实现精准投放,则这一块也会有很大的市场。
第三,电子商务。基于大数据的电子商务,将成为智能信息匹配平台的重要组成部分。
第四,舆情增值服务收入。媒体可以给政府、企业等各类组织提供基于大数据的舆情服务,进而获得收入。
第五,网络行政服务。智能传播平台能够为当地政府提供高效的、标准化的网络行政业务,其市场规模也会很大。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18