
重构大数据:探索健康险“治未病”新模式
5月以来,一系列国家大力支持商业健康险发展的政策频现。作为深化医药卫生体制改革、发展健康服务业、促进经济提质增效升级的“生力军”,商业健康保险发展已势如破竹。随着互联网和大数据时代的到来,特别是在“数字人生”和“数字医疗”的大背景下,健康险和寿险经营的基础环境也将发生根本性的变化,因此在机遇和挑战面前,“重构数据增强险企创新核心竞争力”、“依靠大数据运行提高效率和服务水平”、“探索"治未病"新模式”等成为业内共识。
数据积累不足——
掣肘商业健康险发展
随着中国人慢性病、重病发病率的增加,很多家庭为支付医疗费用承受巨大经济压力。在全民健康保障体系中,商业健康保险不仅弥补了基本医疗保障范围的不足,还可满足不同收入人群、不同职业人群、不同风险人群多样化、多层次的医疗保障需要。
近年来,我国商业健康保险发展成绩显著。2014年,我国商业健康保险保费收入1587亿元,同比增长高达41%。截至目前,保险行业已经推出商业健康保险产品2300多个,健康保险的服务功能也从基本医疗费用补偿,向预防、治疗、康复为一体的综合性健康管理转变。
“但是,目前我国商业健康保险产品的创新能力不足,风险管理能力也有待提高。与此同时,受制于商业健康保险风险覆盖范围相对狭窄、保障方式相对单一、经营成本偏高等因素,多数保险公司的健康险业务经营处于亏损状态。”谈及我国商业健康保险的发展现状,中国保险学会会长姚庆海表示,商业健康险的经营主体在医疗健康管理产业链中能动性低,专业化的健康管理服务水平还有待提高。保险机构不仅难以共享公立医疗机构的诊疗信息,而且难以深入介入和参与人们的疾病诊疗与健康管理流程。健康保险数据平台不够健全且缺少数据积累,也要求商业健康保险对互联网、大数据、基因工程等科技的整合能力进一步加强。
重构大数据——
险企创新核心竞争力
“实际上,购买健康险客户的根本诉求并不是要得到保险赔偿,保险公司应当在客户健康管理方面下工夫,让客户真实地感受到保险公司提供的不仅仅是保障承诺,更重要的是基于专业管理的个性化健康状态维护,可以提供从家庭、社区以及医院包括养老院和康复中心的全方位平台解决方案。”有保险专家对记者表示,保险业应该通过健康保险这一平台,集合并成为广大被保险人的“利益代理人”,利用大数据、物联网、基因工程和人工智能等前沿科技,形成一种倒逼机制,推动我国卫生和医疗体制改革,同时利用这些技术,探索全新的保险商业和服务模式。
当前,在“互联网+商业健康保险”的发展模式下,移动互联、大数据、可穿戴设备、便携式检测设备等领域的新进展,都将推动对健康风险的事前预防、实时监控、实时响应和快速服务,商业健康保险的运行效率和服务水平有望得到革命性的提升。
因此,解构和重构数据将成为未来保险公司创新的核心能力。这不仅需要保险公司建立跨学科的“科学团队”跟踪和研究新技术和新领域,尤其需要捕捉前沿领域的技术,并根据业务发展和提高效率的需要,构建全新的商业模式。
运用大数据——
“治未病”不再遥远
《黄帝内经》中有句话:“圣人不治已病治未病”。对于保险业而言,从业务发展的角度看,需要将“治未病”作为经营重点,为客户提供高水平的健康管理服务。从自身经营的角度看,应当思考行业发展的“治未病”问题,未雨绸缪,探索新模式。
应该说,大数据分析在保障产品设计及精算定价、理赔运营管理、医疗机构管理、市场和销售拓展等医疗保险经营的各个领域均有很大应用价值。日前新华保险发布的2014年理赔数据报告,就用“数据事实”,深入剖析了客户理赔及疾病健康发生趋势,为客户提供了一份清晰的“治未病”蓝图。
数据显示,2014年新华保险个险理赔累计给付26.49亿元,较2013年增长19.16%。其中重疾和特种疾病的增幅最为显著,分别为29.55%和166.98%。从理赔身故类数据看,占比前三位分别为恶性肿瘤、意外事故、心脑血管疾病。而在恶性肿瘤赔付种类中,乳腺恶性肿瘤的赔付占比最高,为17.67%;其次是甲状腺恶性肿瘤14.72%;再次是支气管和肺部恶性肿瘤11.43%。从重疾赔付金额看,61.40%的重疾保额在0-5万元,占比最高,仅1.69%客户重疾保额高于15万元。从赔付年龄看,40-49岁客户重疾赔付占比最大,为40.52%,出险客户中年龄在30-59岁的占比达86.93%,该年龄客户是家庭经济收入来源的主力。
站在理赔角度,新华保险数据分析专家给出健康险投保建议:一要首选重疾。因重疾呈现年轻化趋势,且年龄小费率低,健康状况好,易标准承保,因此宜尽早投保。二要必备意外。在身故赔付中,意外事故占比15.95%,因此在计划保险保障时,务必配备意外险,尤其是风险较高的男性。三要保额充足。从理赔数据看,大多数客户的身故/重疾保额在10万元以下,保障功能体现不明显,建议重新检视自己的保单,通过产品组合的方式,提升保障额度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04