
P2P行业风控是核心 释放大数据能量是趋势
日前,“中国P2P网贷平台风险评价体系专家研讨会”在京召开,旨在探讨用量化的体系来评价P2P平台的风险。与会专家对P2P行业当前利用大数据和评级模型的探索给予了肯定,同时,也针对性地提出了现在整个大数据风险评级工作所面临的,诸如数据采集困难、真实性和一致性难以保证等现实问题。
自P2P平台诞生的那一刻起,几乎所有的P2P平台都在谈风控,但事实上中国P2P平台的风控一直处于红色警戒线边缘。随着互联网技术的发展,互联网前沿科技成为P2P行业发展的驱动力,利用大数据技术来做P2P网贷平台风险评级和风险控制,也已成为行业发展必须迈过的一道坎。
大数据风控何以成为可能?
现如今,在大数据时代下,数据比以往任何时候都更加根植于我们生活中的每个角落,商业科技逐步渗透到医疗、政府、教育、经济、人文以及社会其他各个领域,并成为有价值的公司资产,以及重要的经济投入和新型商业模式的基石。2009年前后,“大数据”成为互联网信息技术行业的流行词汇;2013年,随着互联网金融的空前热门,“大数据”被逐渐推向了风口浪尖。而探究互联网金融与大数据流行之间的关联,背后的关键的因素,即是互联网金融一直无法绕开的核心命题—风险控制。
大数据风控系统之所以成为可能,是因为互联网时代,我们每个人在网上都留下了数据痕迹,通过大数据的分析和预测技术,就可以智能化判断一个人的潜在信用风险。通过风控模型的梳理和分析,可以得出有关借款行为的需求、申请借款类型、申请金额,逾期及违约的可能性等结论,这些数据即构成了对个人用户进行信用风险评估的基础。互联网金融的核心环节是风控,行业的健康成长也有赖于此。互联网金融并非简单的将传统金融服务模式搬上线,其核心竞争力不是营销获客能力而是大数据风控能力。
随着大数据技术的日益成熟,利用大数据技术服务于P2P信审工作,成为当下众多互联网P2P平台的技术创新点。目前,国内多家平台已经开始了相关探索,宜信宜人贷推出的“极速模式”通过精准有效的信审模型,大大提高了借款审批速度,这一史无前例的创新,在整个行业开启了新变革。
领航P2P行业宜信宜人贷做好大数据风控
用大数据技术来做互联网金融机构的风险评级和风险控制,几乎已成为共识,强大的风控管理经验和技术手段也是P2P平台保障良好运营的关键。在平台的运营过程中,从用户信息的获取、去噪、清洗、聚合到决策,每个环节都不开庞大的数据支撑,而对于数据的处理直接影响到风控手段实施的效果。
在行业尚未规范的初期,光靠苦口婆心的监督、劝导、和用户努力睁大的火眼金睛显然不够。作为全球最大的P2P公司,持续进行风控技术创新,一直以来是宜信引以为傲的优势。宜信一直努力打造强有力的信用管理和风险防控体系,不仅关乎客户利益和企业自身的长期、良性运转,同时对国内互联网金融行业的发展也起到了示范作用。
在利用互联网大数据技术的基础上,宜信宜人贷打造了一套独有的信审数据模型,利用该模型,用户信息能够得到迅速的识别与筛选,用户体验和服务效率都得到了极大的提升,是P2P行业利用互联网大数据进行风控和业务创新的典型代表。
宜信宜人贷推出的国内首款大数据信贷金融服务——“极速模式”便是通过大数据风控技术创新,突破性地实现了无需提交财产证明和信用报告,10分钟快速完成借款审批流程的高效体验,刷新了行业借款速度的标准。目前,“极速模式”已在北京、福建、广东、湖北、湖南、江苏、辽宁、山东、浙江等地区开通服务。
2015年的P2P行业将依然火爆,风险也在逐渐累积,而利用大数据进行风险评级和风险控制已势在必行。大数据的能量是无限的,宜信创始人唐宁曾这样表达自己对于大数据的看法:“大数据不是万能的,没有大数据是万万不能的,大数据在信用决策、风险控制中发挥着重要左右,而传统的信用和金融数据在今天和看得见的未来还是主要决策信息来源,大数据起着越来越重要的辅助作用。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14