
大数据分析优化保险理赔的六条途径_数据分析师考试
大数据…大数据…现如今,人们总是在各种地方以各种方式提到这个词。然而,万能的大数据对保险行业究竟有什么用呢?想象一下:你在无边无际的数据中挑拣,搜索并整理你所需要的信息。这些数据可能来自于保险理算员手写的笔记、保险欺诈清单、理赔管理系统以及NICB(National Insurance Crime Bureau,国家保险犯罪局)的庞大的数据库。你真的能够充分利用这些数据吗?
在堆积成山的保险理赔中,理算员不可能有时间和精力去对每一个理赔查阅上面提到的所有数据。这样,他便很有可能遗漏某些重要信息,从而无法做出最优的判断。事实上,理算员在很大程度上是根据自己的经验、直觉以及手头有限的信息对各个理赔申请做出结论的。
正因为如此,大数据分析技术在保险行业中的地位便越来越重要。与传统保险理算一起,大数据分析可以通过分析,将需要仔细分析、提前处理之类的理赔申请标记出来。
这里,大数据分析可以从六个方面充分展现自己的价值:
欺诈:有十分之一的理赔申请存在欺诈的成分。那么,如何在巨额赔付生效前发现这些欺诈行为呢?市场上,针对欺诈行为的解决方案多数是基于政策的,然而不幸的是,欺诈者想要绕过这些政策,甚至利用这些政策中的漏洞,实在是太容易了。但是,预测分析(Predictive analysis)理论则可以通过对政策、模型、文本挖掘、数据库以及异常报告的综合应用,在理赔申请的各个环节更快、更有效地甄别欺诈行为。
代位求偿权(subrogation):保险公司大部分能够申请代位求偿的机会都因为那庞大的数据量而凭白丧失了。申请代位求偿的数据往往能够从警方的记录、理算员的笔记以及医疗记录中找到。文本分析方法能够在这些凌乱的数据中搜索并找出与案例有关的相应章节。通过更早的抓住申请代位求偿的机会,保险公司能够让自己的损失最大程度上地收回。
赔付:为了降低成本并且保证公平性,保险公司往往采取类似快捷赔付的方式即时对赔付申请进行赔付。但是,对于所有的申请都选择“随申随赔”很可能会导致保险公司赔钱过多。当一个保险公司见识到某些自然灾害后如潮水涌出的房屋损坏险赔付时,他便会对即时赔付方式产生的问题深有体会。通过分析理赔申请以及理赔申请的历史记录,保险公司可以优化即时赔付的限额。大数据分析同时还可以将理赔的审理周期缩短、提升客户满意度并且降低人工成本。同时,这样的分析还可以应用于如租车险等类似的险种,有效降低成本。
赔款准备金:当一个理赔申请递交时,保险公司根本无法预测这个理赔的金额以及处理时间。但是,准确的赔款准备金以及理赔预期则是必须的,特别是针对那些长线赔付案例,例如债务和工伤赔偿。大数据分析可以通过与类似赔付案例比较,精确地计算损失准备金。在这个赔付案例的数据更新之后,保险公司可以对损失准备金进行重新评估,用于对今后类似的索赔案件进行分析。
分配:在理想情况下,保险公司应当让最有经验的理算员处理最复杂、最棘手的理赔申请。但是,理赔申请的初期评估是根据有限数据进行的,这便导致了保险理赔的高重评估率,延长了赔付审理的时间,降低客户满意度。数据挖掘技术可以通过对损失的类型进行分类,并对各个理赔申请进行评分,从而将申请派发给最合适的理算员。在某些特殊情况下,理赔申请甚至可以被自动处理并赔付。
诉讼:保险公司的损失调用费用比率(Loss adjustment expense ratio)中的很大一部分都被用在了对争议赔付的诉讼之中。保险公司可以通过大数据分析方法计算一个诉讼倾向评分,从而猜测哪些理赔申请最容易进入诉讼流程。对于那些最容易进入诉讼流程的理赔案件,保险公司可以派更加资深的理算员对其进行处理,从而保证公司能够以最低的价格最快地对这些申请进行赔付。所以,究竟是为什么要让大数据分析进入到保险公司的理赔处理流程之中呢?是因为当保险逐渐变成商品的时候,保险公司便更加需要将自己与同行业的竞争对手区分开来。通过对理赔处理中的各个环节加入大数据分析,投资的收益将会随着成本的降低而显著增加。要知道,对于一个总资产十亿美元的保险公司来说,每降低1%的赔付率最终给公司带来的直接收益将高达七百万美元。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29