京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据分析优化保险理赔的六条途径_数据分析师考试
大数据…大数据…现如今,人们总是在各种地方以各种方式提到这个词。然而,万能的大数据对保险行业究竟有什么用呢?想象一下:你在无边无际的数据中挑拣,搜索并整理你所需要的信息。这些数据可能来自于保险理算员手写的笔记、保险欺诈清单、理赔管理系统以及NICB(National Insurance Crime Bureau,国家保险犯罪局)的庞大的数据库。你真的能够充分利用这些数据吗?
在堆积成山的保险理赔中,理算员不可能有时间和精力去对每一个理赔查阅上面提到的所有数据。这样,他便很有可能遗漏某些重要信息,从而无法做出最优的判断。事实上,理算员在很大程度上是根据自己的经验、直觉以及手头有限的信息对各个理赔申请做出结论的。
正因为如此,大数据分析技术在保险行业中的地位便越来越重要。与传统保险理算一起,大数据分析可以通过分析,将需要仔细分析、提前处理之类的理赔申请标记出来。
这里,大数据分析可以从六个方面充分展现自己的价值:
欺诈:有十分之一的理赔申请存在欺诈的成分。那么,如何在巨额赔付生效前发现这些欺诈行为呢?市场上,针对欺诈行为的解决方案多数是基于政策的,然而不幸的是,欺诈者想要绕过这些政策,甚至利用这些政策中的漏洞,实在是太容易了。但是,预测分析(Predictive analysis)理论则可以通过对政策、模型、文本挖掘、数据库以及异常报告的综合应用,在理赔申请的各个环节更快、更有效地甄别欺诈行为。
代位求偿权(subrogation):保险公司大部分能够申请代位求偿的机会都因为那庞大的数据量而凭白丧失了。申请代位求偿的数据往往能够从警方的记录、理算员的笔记以及医疗记录中找到。文本分析方法能够在这些凌乱的数据中搜索并找出与案例有关的相应章节。通过更早的抓住申请代位求偿的机会,保险公司能够让自己的损失最大程度上地收回。
赔付:为了降低成本并且保证公平性,保险公司往往采取类似快捷赔付的方式即时对赔付申请进行赔付。但是,对于所有的申请都选择“随申随赔”很可能会导致保险公司赔钱过多。当一个保险公司见识到某些自然灾害后如潮水涌出的房屋损坏险赔付时,他便会对即时赔付方式产生的问题深有体会。通过分析理赔申请以及理赔申请的历史记录,保险公司可以优化即时赔付的限额。大数据分析同时还可以将理赔的审理周期缩短、提升客户满意度并且降低人工成本。同时,这样的分析还可以应用于如租车险等类似的险种,有效降低成本。
赔款准备金:当一个理赔申请递交时,保险公司根本无法预测这个理赔的金额以及处理时间。但是,准确的赔款准备金以及理赔预期则是必须的,特别是针对那些长线赔付案例,例如债务和工伤赔偿。大数据分析可以通过与类似赔付案例比较,精确地计算损失准备金。在这个赔付案例的数据更新之后,保险公司可以对损失准备金进行重新评估,用于对今后类似的索赔案件进行分析。
分配:在理想情况下,保险公司应当让最有经验的理算员处理最复杂、最棘手的理赔申请。但是,理赔申请的初期评估是根据有限数据进行的,这便导致了保险理赔的高重评估率,延长了赔付审理的时间,降低客户满意度。数据挖掘技术可以通过对损失的类型进行分类,并对各个理赔申请进行评分,从而将申请派发给最合适的理算员。在某些特殊情况下,理赔申请甚至可以被自动处理并赔付。
诉讼:保险公司的损失调用费用比率(Loss adjustment expense ratio)中的很大一部分都被用在了对争议赔付的诉讼之中。保险公司可以通过大数据分析方法计算一个诉讼倾向评分,从而猜测哪些理赔申请最容易进入诉讼流程。对于那些最容易进入诉讼流程的理赔案件,保险公司可以派更加资深的理算员对其进行处理,从而保证公司能够以最低的价格最快地对这些申请进行赔付。所以,究竟是为什么要让大数据分析进入到保险公司的理赔处理流程之中呢?是因为当保险逐渐变成商品的时候,保险公司便更加需要将自己与同行业的竞争对手区分开来。通过对理赔处理中的各个环节加入大数据分析,投资的收益将会随着成本的降低而显著增加。要知道,对于一个总资产十亿美元的保险公司来说,每降低1%的赔付率最终给公司带来的直接收益将高达七百万美元。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15