
大数据落地价值的四大体现_数据分析师考试
大数据分析已不仅仅是实验工具了。许多公司已利用这个方法取得了成果,并正在更加努力去纳入更多数据,增加新的模型,以从中获得价值。
降低成本
像Hadoop和基于云端分析这样的大数据技术,可以提供实实在在的成本优势。如果说从功能面上,很难在大数据技术和传统架构(特别是数据仓库)之间做比较,因为它们的功能具有太大的差异。但单从价格上对比,选择就简单多了,二者之间能发现数量级上的区别。
基本上每一家正在应用大数据技术的大公司,并非都去替代现有架构,而是通过大数据技术进行增强。人们不再在数据仓库中处理和存储大量新的数据,而是使用Hadoop集群实现同样功能。当业务分析有需要时,再将数据迁移到数据仓库。
知名公司如花旗银行、富国银行和联合服务汽车协会(USAA)等,都在现有的存储和处理分析系统之外实施了Hadoop项目,这将可能帮助公司管理大数据时起到永久而重要的作用。
更快更好地制定决策
大型企业都在力求利用大数据更快更好地制定决策,这其中也不乏成功者。在50家受访的公司中,一些公司通过Hadoop和内存分析技术的驱动,着重加速现有的决策过程。
领先的娱乐公司凯撒(Caesars)是分析应用的老手,公司拥有的数据来自奖励忠诚计划、网络点击和老虎机上的客户实时游戏。凯撒公司发现,如果忠诚计划中的一个新客户在老虎机上运气不佳时,很可能再不会回来了。但是,如果它能在客户沮丧离开老虎机前,及时提供免费餐券,客户很可能再次来玩赌博游戏。显然,传统方式很难做到实时整合和采取行动。为了实现这个目标,凯撒公司购买了Hadoop集群和商业分析软件,还为自己的分析小组增添了一些数据科学家。
在金融领域,德国企业资信评估机构Creditreform公司正通过高性能大数据分析平台,在1秒内查询一个包含1.5亿条客户信息的数据库,并给出信用审批答复,因为客户不会等待。
一些公司则更侧重通过分析新的数据源,制定更好的决策。例如,健康保险巨头United Healthcare正在使用SAS的“自然语言处理”工具,把客户打给呼叫中心的语音电话转换成文本,并分析客户不满的迹象,适当干预来改善客户满意度。
开展精准的客户沟通
一些公司正尝试创建一个营销混合模式,将手机作为整个营销的核心,向客户推送量身定做的社交媒体信息、短信和广告播放。营销人员也拥有一个全新强大的信息源,网站浏览、移动支付平台等将提供真实的数据,让营销行业了解每位客户独一无二的习惯、对广告的反应,并有能力真正了解实时营销的投资回报。
英国移动电子商务公司Weve,在每位客户浏览移动网站网页时,通过移动通信业务提供实时(300毫秒以内)广告服务,这覆盖了1700万客户。而且,这些广告是基于对每位客户的深入了解而精准投放的。它不仅仅与客户个人有关,还与客户当时所处状况有关。Weve相信,这种实时、个性化的营销方式肯定会成为潮流。
大数据分析还能为零售行业实现个性化定价。现在客户获得的折扣、产品和服务以及奖励都是针对个人特性而提供的。个性化营销意味着更加具有相关性和吸引力。在过去10年中,数字化技术几乎要摧毁零售业。今天,数字化技术将有可能以一种不寻常的方式挽救零售业。
提供前所未有的全新服务
为客户创造全新的产品和服务可以说是大数据应用最有趣的地方。在这方面,互联网公司已经做了十几年的尝试,而现在,大多数的传统企业也加入了这一队伍。以通用电气为例,它的投资主要在利用大数据分析促进行业产品的新服务模型方面。
大数据分析帮助企业机构对广泛的新数据源进行资本化,随时捕获数据、分析全量数据而非样本子集,对数据应用更多成熟的分析技术,在几分钟之内获得答案,而在以前往往需要几个小时甚至几天。移动技术可以告诉您,您的客户现在在哪里,如果他们正在移动网站上浏览,他们在看什么和买什么。
以意大利高速公路电子收费系统的供应商Telepass为例,客户带着移动设备行驶在高速路上,Telepass所拥有的信息使得他们有可能帮助合作伙伴或其他公司对这些旅客们提供服务。您能够想象的客户需求越多样,提供的服务就越丰富,就能为客户和合作伙伴带来更多的价值。
无线通信公司Verizon也基于它广泛的移动设备数据促进新的产品和服务。对NBA菲尼克斯太阳队来说,Verizon的精准营销洞察力部门为其提供什么地方的人们会现场观看球队比赛,现场观众中来自城外的人数百分比,以及观众多久观看一次篮球比赛结合一次棒球春训比赛或进一次快餐连锁店的信息。这种洞察对太阳队来说,在定位广告和促销时显然十分有价值。
为黄金时刻做好准备
这些例子清楚阐明了大数据分析的价值。当然,就大数据能力的范围还有些问题尚待解决,但是,质疑大数据商业价值的时期已经过去了。以上列举的这些公司和其他更多公司,已经显示了他们能通过成功的大数据分析降低成本、制定更快更好的决策、进行精准的客户沟通甚至为客户提供全新的产品和服务。很显然,大数据时代将开创巨大的商业机会。所以请抓住时机,及时发挥大数据分析的潜力!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04