京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据企业应该避免的几大错误_数据分析师考试
如果企业改变它对大数据的想法,大数据会改变企业的思路。这听起来有些像禅宗心印 (Zen Koan)。不过,这是获得突破性见解的关键:你的眼光必须超越思想的限制,思考和询问你希望从拥有的数据中得到什么。
尽管如此,许多机构出人意料地没有把这种新的思想应用到自己的大数据计划中,结果导致严重的计划失败。
错误的想法,也就是“大数据的错误”,有三个主要方面。如果不解决这些错误想法,这些错误将直接导致一些欠考虑的计划,不能提供有意义的商业价值。
由于害怕失去机会,许多机构仓促地实施大数据基础设施项目,以避免落后。麻省理工学院《史隆管理评论》(MIT Sloan Management Review)发表的一篇调查报告指出,大数据的迅速流行导致一些大型企业的执行委员会向管理人员发出如下指令:“我们不知道大数据是什么,但是,我们最好立即解决大数据的问题。”
这种下意识的反应已经导致出现一些无法实现的计划,如盲目地建造Hadoop(分布式计算)集群,含糊的目标是用12至24个月的时间,没有考虑如何帮助提高收入、节省成本或者提高竞争力的实际应用案例。这种仓促的决定显然会使大数据计划失败。
本文作者Attivio公司产品营销主管Mike Urbonas的同事Randy McLaughlin最近发现“大数据”这个词汇有许多竞争的定义,这些定义限制了这个词汇的实用性。例如,早些时候的定义让“大”等于“量”。这个定义是不完善的,并且仍然在坚持。许多人仍然错误地认为大数据是Hadoop的同义词。
这是一个问题,因为把重点放在量的方面将导致大错误。这是《哈佛商业评论》最近发表的一篇题为“更大的数据会导致更好的决策吗?”的博客文章提出的警告。这篇文章的作者引述长期的研究结果称,决策者经常为了提升自我或者证明现有的想法而有选择地使用和解释信息。仅仅增加数据量不会对目前常规的企业想法构成挑战。
这也许是许多企业设法利用庞大的数据量,只有少数企业真正取得成功的原因。这个问题的解决方案不是重新制定一个决策过程,而是重新制定一个机构的战略,不是把量作为主要技术重点,而是把管理多样性作为重点!
《哈佛商业评论》那篇文章的作者还指出,“大量”实际上过时了;金融服务公司几十年以来一直有大量的数据。目前真正新的东西是信息资源的多样性。这些资源将产生新的商业见识。
这篇文章指出,多样性的商业团队比单一的商业团队更有创造力;多种数据合并在一起会产生同样的好处。因此,我们不能说数量大的数据会导致更好的决策,而是把使用新技术、处理过程和技能的许多点连接起来的多样性的数据会导致更好的决策。通过一个统一信息接入平台,这些点的连接会迅速完成。
设想一下,把相关的和分析交易数据库与客户在社交媒体、网站、电子邮件、即时消息聊天和呼叫中心记录等地方发表的喜欢或不喜欢的意见组合在一起,其结果是一个对客户解决方案的真正的全方位的看法。这个客户解决方案提供新的可执行的见解,在最大限度提升客户服务、忠诚度以及成功的追加销售和交叉销售的同时减少客户流失。这是大数据多样性的业务转型的力量。
重要的是需要指出,越来越多的证据表明,开始获得真正的改变游戏规则的回报的机构认识到,这是通过管理多样化的信息实现的。例如,上述大数据调查报告指出,受访的大企业都谈到管理各种数据和集成多种来源的信息。这是企业使用大数据的重点。这包括使用非结构化数据。
因此,如果你的机构还没有探索把管理多样性数据作为大数据商业价值的主要推动因素和技术重点,你的机构现在要在竞争对手采取行动之前把这个工作摆正优先的位置。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22