
别扯大数据 !请先面朝用户_数据分析师培训
大数据很火,TED的创始人Dan Ariely这样调侃:大数据就像青少年谈性,每个人都在说,不知道谁做了,每个人认为另外人在做,所以每个人都声称自己在做……这是一句玩笑,却道出了实情,正在做大数据的企业不多。可以肯定的是,大家跃跃欲试。
大数据不止于炒作概念,已经有很多大数据应用成功的案例,如百度的旅游景点人流及舒适度预测;如淘宝的个性化购物推荐;以及小米手机的10万人互联网开发团队,等等。
大数据固然很美,也是前进的方向。“大数据的本质就是还原用户的真实需求”,阿里巴巴集团数据委员会委员长车品觉一语道破天机。那些跃跃欲试的企业,要先问自己这样一个问题:我真的关注用户的真实需求么?别急于用墙上的标语来回答,先看看你们企业是否存在以下四种情形:
第一,面朝KPI,管理层视KPI为救命稻草,分解、考核成了他们的主要工作。不管KPI分解是否合理,不与下属一起去找完成KPI的办法,不去跟踪执行,甚至默许KPI中的水分。员工视KPI为指挥棒,关乎KPI的工作,认真干,其他则可以敷衍。为了KPI不惜蒙骗用户。
第二,面朝领导,员工把听领导的话当着最好的执行,同时领导也这样理解执行。领导安排的工作必定是最重要最紧急,摆在优先处理的位置。做不做某件事的唯一理由就是领导是否安排。
第三,面朝自己,凡事先撇开自己部门以及自己的责任,在用户和同事面前,他们的口头禅是“这事儿不归我管”、“这事儿我不清楚”。
第四,面朝制度,用户来咨询、投诉,回答永远是“公司的制度”。没有沟通,没有实事求是,将公司的规定、制度强加于用户。公司的制度本意就是防止用户、员工钻空子;员工们坚信,无论如何,都不得让自己和用户违反公司制度。
面朝KPI、面朝领导、面朝自己、面朝制度,都背对着用户,能关注用户需求么?先别扯大数据,先面朝用户吧。大数据不是万能的,不关注用户需求的企业,大数据应用做得再好也无济于事——当然,也不可能做好。
面朝用户,即使没有大数据,也可以了解用户需求。搜集用户需求的途径有很多。调查问卷、焦点小组是传统有效的了解用户需求的方式。调查问卷标准化、结构化、覆盖广,可以得出具体量化的结果。而焦点小组则开放、自由,沟通深入、充分,需要专业的观察与记录,得出的是感性而非量化的结论。无论调查问卷,还是焦点小组,都是走群众路线,到用户中去,听取用户意见、建议,确保产品、方案从用户中来。不容忽视,用户热线也是很好的倾听用户的方式,无论是投诉,还是咨询,都是用户真实意见的表达。
面朝用户,即使没有大数据,也可以做出很好的产品和服务。海底捞火锅是个很好的例子。海底捞在服务质量普遍不高的餐饮业以好得“变态”的服务取胜。它通过善待员工,向员工授权,让员工满意,解放员工的大脑,让员工迸发出创新的活力,让员工发自内心的为用户提供良好的服务。当然,大数据也可以用于海底捞的决策参考或者营销活动评估,这并不矛盾。
大数据应该在我们用传统的方法不能洞察用户需求,不能改善用户体验的情况下才被请出来。一方面,如果市场调研、用户体验都不曾做过,说明压根就没关注用户需求的意识,没这意识做大数据就是浪费。另一方面,无论是建模,还是最后的结果应用,大数据都需要和实地调研、与用户的接触经验相结合。
大数据固然美好,对于关注用户需求的公司,大数据能让他们如虎添翼,更好的把握用户需求,改善用户体验。对于不关注用户需求的公司,以及那些有关注用户需求的愿望却因为面朝KPI、面朝领导、面朝自己、面朝制度而没能真正关注用户需求的公司,还是先转身,面朝用户吧!
面朝用户,从用户那里获取最真实需求信息,从用户那里获得认同与力量。
面朝用户,即使没有大数据,也能洞察用户需求,做出好的产品和服务。
当企业、员工面朝用户,树立了关注用户需求、改善用户体验的意识,再做大数据,也不迟。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27