
大数据审计:让违规资金无处遁形
随着信息技术的迅猛发展,行业应用所产生的数据呈爆炸性增长,大数据审计应时而生。去年以来,审计厅尝试运用大数据分析技术,探索审计监督新模式,撞开了一扇新的高效的“审计之门”。
“审计对数据有天然的依存关系。”5月27日,审计厅厅长黄河说,作为经济运行综合性监督部门,保持对社会经济数据的灵敏感触,深挖细掘、充分运用,是大数据时代对审计工作的内在要求和必然选择。
大数据审计到底有多神奇?审计人员如何从海量数据中发现违规资金的疑点和线索?记者追踪了一年来审计在大数据环境下的足迹。
审计数据量有多大?
一次审计调用700G数据
今年2月,审计厅电子数据审计处正式挂牌成立,负责组织开展跨行业、跨部门、跨地区的数据分析,联网审计和省直各部门(单位)电子信息系统审计,以及对电子数据进行综合分析和利用等工作。而我省大数据审计的尝试,此前早已开始。
去年初,审计厅建立起分类分步采集的数据获取机制。通过专网联结、定期拷贝与建立定期报送制相结合的方式,审计部门可以无障碍获取不同系统不同部门的电子数据信息。目前,审计数据中心已收集有省级财政国库集中支付业务、非税收入、总预算会计数据等相关数据。
以海量数据为基础,依托不同的审计分析模型,审计人员就可以有针对性地“攫取所需”了。
正在进行的税收征管审计中,审计厅专门成立的地税审计数据分析团队充分利用采集到的各类数据,构建起125个审计分析模型,覆盖了包括税务管理、税款征收、发票管理等几乎所有地税业务。分析团队查询分析了多个系统约700G的电子信息数据,在房产税、车船税、城镇土地使用税、机打发票、三代管理、小微企业税收优惠政策执行、退税等7方面新编写了21个审计方法。然后,审计人员选取国土、工商、房地产等外部涉税信息数据,与相关税收征管数据比对分析,揭示出漏征漏管税收和征管制度缺陷等各种问题,提出了有针对性的审计建议和意见。
审计速度有多快?
几周的工作量缩短到几分钟完成
有了大数据分析技术支持,一些大型专项审计能够在短期内完成。
全省农村信用社数量多、分布广、业务量大,有着庞大的数据量。过去,由于缺乏计算机及金融专业人才,加上各市州审计机关各自为政,存在许多重复劳动和结果不显著的问题。正在进行的针对全省农村信用社112家法人机构的审计改变了这一尴尬状况。
审计部门依托创新开发的金融审计数据分析平台,实施“总体分析、发现疑点、分散核实、系统研究”新型审计模式,提升了审计项目实施的实时互动、科学管理以及数据利用。“通过编制审计模型,数据分析小组可在那些令人眼花缭乱的数据、票证中,循着蛛丝马迹,快速找到同一违法行为的共同标志,让异常数据浮出水面。”数据分析组组长介绍说,以贷款为例,数据分析人员可通过数据联网分析贷款户的资金流向是否符合国家政策和申贷要求,跟踪资金用途,就能查出有没有被挪用,是否存在非法侵占、挥霍贷款等情况。
这项审计涉及贷款总量超过1000亿元,审计厅在短短一周内便实现了对全省信用社信贷发放结构等业务数据的分析和核实。按照传统审计办法,审计骨干人员可能要几周才能完成的工作量,如今几分钟就能完成。
数据挖掘有多深?
一家公司异常带出一个行业整治
大数据审计依托信息数据进行系统分析,实现了精准核查、整体评价。
去年上半年进行的预算执行审计中,审计人员利用不同行业数据之间存在的关联关系进行比对,发现省级劳务公司开票金额与营业税计税基数之间出现巨大异常。随后顺藤摸瓜,又发现有数十户劳务派遣公司开具发票18万张、涉及金额144亿元,而计税基数仅为发票额的1%-2%。针对审计发现的问题,省地税局、公安厅、审计厅等部门专题研究部署,迅速启动了对全省劳务公司开具发票的专项整治工作。
对于这次审计,电子数据审计处处长余川感触最深:“大数据分析立足于与审计对象具有关联关系的所有数据,为审计提供了一种站高望远、从整体把握对象的技术手段。”
有了大数据分析的支持,审计人员犹如多了一双透视眼,可以快速锁定疑点,并追询疑点、定向排查、查实查透。
4月刚结束的全省保障性安居工程跟踪审计中,审计组通过比对部分市、县10余万条人员信息数据与房管部门商品房信息,发现了上千名购有商品房、超过规定标准的人员违规享受保障性住房;通过将享受保障性住房待遇人员信息与同期养老保险缴费基数、公积金缴费基数、个人所得税应税数及机动车辆登记信息等进行比对,骗取或违规享受保障性住房、骗取或违规领取货币补贴等问题浮出水面。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23