
有些人认为,“大数据”这一词汇不过是企业营销时的大肆炒作。但即使是那些接受大数据概念的人,也需要消除某些大数据误区。
全球领先的信息技术研究和咨询公司Gartner指出,大肆宣传大数据概念,使企业在选择适当的行动方案时,受到更多困扰,但对消除一些仍存在的误区却毫无帮助。
例如,80%的数据是非结构化的,这是错误的;又如高级分析功能只是更复杂形式的普通分析,分析公司Gartner指出,这也是不正确的。
Gartner公司在已发布的两篇报告《大数据对分析功能影响中的主要误区》和《大数据对信息基础设施影响中的主要误区》中,集中探讨大数据对分析功能及信息基础设施影响中的相关误区,希望展示大数据相关的更多真实情况。以下摘取大数据概念的五大误区。
误区一:在大数据技术部署中,其他人都领先我们
虽然越来越多的企业开始关注大数据技术和服务,Gartner公司测算结果显示,73%的企业正在投入或策划大数据技术,但大多数企业才刚刚开始接受这一技术。
因此,担心竞争对手运用大数据技术快速发展实在是杞人忧天。实际上,只有13%的受访企业真正开始部署大数据相关技术。
大数据的五大误区及其破解之道
Gartner公司表示:“企业面临的最大挑战是怎样通过大数据获得价值以及怎样入手部署大数据技术。大多数企业在试点阶段就遇到困难,因为他们并没有在业务过程或实际用例中运用该技术。”
Gartner公司的结论是:你并没有落后。为实际的任务制定策略,并与IT及业务部门合作。
误区二:数据量很大,而小缺陷无关紧要
有人认为,根据大数定律(Law of Large Numbers),独立的数据缺陷无关紧要,不会影响分析结果。
与更小规模的数据集相比,独立的数据缺陷对整个数据集的影响的确要小很多,但目前,数据量不断增长,数据缺陷与以往相比也越来越多。
Gartner公司表示:“因此,低质量数据对整个数据集的整体影响仍保持不变。此外,企业在大数据环境下使用的大部分数据来自外部数据源,其数据结构和来源未知。”
“这意味着数据质量问题的风险比以往更高。因此,在大数据部署中,数据质量实际上更加重要。”
Gartner公司的结论是:设计出新的数据质量管理方式,并选择数据质量级别。严格遵守数据质量保障的核心原则。
误区三:大数据将取代数据整合能力
企业希望通过读时模式(Schema on Read)处理信息,使用多个数据模型灵活地读取同一个数据源。这种灵活性将帮助最终用户决定怎样按需解释任意数据信息,并实现个体用户数据访问的定制化能力。然而,大多数用户实际上使用写时模式(Schema on Write)。写时模式下用户可描述数据并制定内容,而数据完整性也能保持一致。
误区四:将数据仓库用于高级分析是毫无意义的
有些人认为,高级分析功能可使用新的数据类型时,部署数据仓库则浪费时间。实际上,大多数高级分析项目在分析时都使用数据仓库。
新的数据类型还可能需要提炼,使其适于数据分析。此外,哪些是相关数据、怎样聚合数据以及必要的数据质量级别等都需要企业做出决策。
Gartner公司的结论是:尽可能使用数据仓库存储经人工收集检查的数据集,用于高级分析功能。
误区五:数据湖将取代数据仓库
数据湖解决方案通常被当作企业级平台销售,用于分析原生格式下的各种不同的数据源。但Gartner公司认为,数据湖取代数据仓库,或作为分析基础设施中的重要组件是错误的观点。
与已经成型的数据仓库技术相比,数据湖技术尚未成熟,其功能不够全面。“数据仓库已具备支持多种用户群体的能力。”因此,企业无需等待数据湖技术的成熟。
Gartner公司的结论是:在现有数据仓库中运用Hadoop等数据湖技术。只有在元数据管理技术、工具及培训上投入,才能通过数据湖技术创造业务价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18