
未来几年,随着互联网、社交网络以及移动技术的深入发展,大数据将继续高速增长并进入深耕与落地时期。在后大数据时代,如何利用数据分析技术快速获取真正的业务洞察力将成为企业制胜的关键。作为大数据的一个非常重要的组成部分,“客户心声大数据”与客户需求相关,有效分析“客户心声大数据”将能帮助企业洞察客户的真实需求,进而采取正确行动优化业务流程,提高客户满意度,提升业务能力。
“客户心声大数据”并非仅来自于社交媒体。事实上,对于大多数企业而言,大部分客户心声隐藏于客户来电、电子邮件、网络以及调查之中。“客户心声大数据”因此也同样具有海量、渠道多样化等特点。此外,调查发现“客户心声大数据”中有超过90%都是非结构化的,包括客户语音、文本、网页、图像、视频以及多媒体等不能用数字和符号标记的各种形式的信息。如何从这些繁杂、错综、无序的非结构化数据中挖掘客户心声已成为众多企业进行客户心声分析的最大挑战。凯捷管理顾问公司(Capgemini)在研究性著作《决定性因素:大数据与决策》(TheDecidingFactor:BigData&DecisionMaking)1显示,40%的企业高层受访者都表示难以利用和解析非结构化数据。
将非结构化数据转化为结构化数据
将非结构化数据转化为结构化数据需要使用高级数据分析工具。Verint的客户心声分析解决方案可以通过业务分类、业务梳理的方式将海量语音、文本数据进行结构化处理,通过找到客户的焦点、客户的共性发现问题以及客户投诉的原因及焦点。Verint的客户心声分析解决方案,主要有三个组成部分。
第一个最主要的组成部分是语音分析引擎。语音分析引擎不同于一般的语音识别,它建立在海量的录音识别的基础之上,通过寻找业务之间的共性找到在企业与客户交互过程中客户最关注或者最核心的问题,进而帮助企业针对这些问题去做进一步的分析处理,洞察客户的真实诉求。
其次是文本分析引擎。文本分析引擎可以自动识别电子商务、Email、微博、微信等各种客户接触点上所产生的自然语言,深入挖掘和分析文本信息中蕴含的客户情绪,并通过报表的形式将客户情绪的分析结果呈现给企业决策者。最后是客户反馈分析,通过企业级客户反馈分析可以将来自不同渠道的零散、杂乱的客户反馈信息整合在一个统一的报表里供企业使用。
读懂大数据时代下的“客户心声”
慧锐系统公司客户心声分析部副总裁DanielZiv
建立协同统一的“客户心声大数据”分析平台
海量、多样化的“客户心声大数据”导致企业难以对来自不同渠道、杂乱无章的客户反馈信息进行统一分析。另一方面,由于企业各部门所接触的客户信息获取渠道不尽相同,所使用的挖掘客户信息应用工具也多种多样,因此导致企业各部门获得的客户心声也大相径庭,企业难以区分工作重点进而采取相应的行动,进而导致企业受到“无关联倾听”的困扰。凯捷管理顾问公司报告显示表明56%的调查受访者认为“组织孤岛”是利用大数据进行有效决策的最大障碍。
因此,建立协同统一的“客户心声大数据”分析平台有助于企业全面洞察客户的真实“心声”和诉求,真正为企业决策提供有用信息。在技术层面,企业可以应用能提供统一分析功能的解决方案。Verint的运营管理优化套件可以将来自不同渠道的数据协同处理,构建成一个统一的分析平台,将所有分析结果呈现在统一界面上。企业可以在这个统一的界面上看到来自于语音分析客户投诉抱怨的焦点在哪里,来自于文本分析当前媒体的热点在哪里,提到最多的关注点在哪里,以及客户的喜好心声。同时,企业还需优化组织结构来解决各部门在客户心声数据分析上各自为政的问题。
目前,虽然距离大数据真正落地还有一段距离,但是语音分析、文本分析等“客户心声”分析技术在国内已经不是比较新的技术,在电信、金融、保险等各行业的企业都有成功实践。在大数据时代,对企业而言,从海量非结构化数据中获取全面、真实的“客户心声”洞察力是挑战但更是机遇。借助有效的客户心声分析技术将有助于企业提高绩效,提升竞争力并实现企业智能化管理。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09