京公网安备 11010802034615号
经营许可证编号:京B2-20210330
未来几年,随着互联网、社交网络以及移动技术的深入发展,大数据将继续高速增长并进入深耕与落地时期。在后大数据时代,如何利用数据分析技术快速获取真正的业务洞察力将成为企业制胜的关键。作为大数据的一个非常重要的组成部分,“客户心声大数据”与客户需求相关,有效分析“客户心声大数据”将能帮助企业洞察客户的真实需求,进而采取正确行动优化业务流程,提高客户满意度,提升业务能力。
“客户心声大数据”并非仅来自于社交媒体。事实上,对于大多数企业而言,大部分客户心声隐藏于客户来电、电子邮件、网络以及调查之中。“客户心声大数据”因此也同样具有海量、渠道多样化等特点。此外,调查发现“客户心声大数据”中有超过90%都是非结构化的,包括客户语音、文本、网页、图像、视频以及多媒体等不能用数字和符号标记的各种形式的信息。如何从这些繁杂、错综、无序的非结构化数据中挖掘客户心声已成为众多企业进行客户心声分析的最大挑战。凯捷管理顾问公司(Capgemini)在研究性著作《决定性因素:大数据与决策》(TheDecidingFactor:BigData&DecisionMaking)1显示,40%的企业高层受访者都表示难以利用和解析非结构化数据。
将非结构化数据转化为结构化数据
将非结构化数据转化为结构化数据需要使用高级数据分析工具。Verint的客户心声分析解决方案可以通过业务分类、业务梳理的方式将海量语音、文本数据进行结构化处理,通过找到客户的焦点、客户的共性发现问题以及客户投诉的原因及焦点。Verint的客户心声分析解决方案,主要有三个组成部分。
第一个最主要的组成部分是语音分析引擎。语音分析引擎不同于一般的语音识别,它建立在海量的录音识别的基础之上,通过寻找业务之间的共性找到在企业与客户交互过程中客户最关注或者最核心的问题,进而帮助企业针对这些问题去做进一步的分析处理,洞察客户的真实诉求。
其次是文本分析引擎。文本分析引擎可以自动识别电子商务、Email、微博、微信等各种客户接触点上所产生的自然语言,深入挖掘和分析文本信息中蕴含的客户情绪,并通过报表的形式将客户情绪的分析结果呈现给企业决策者。最后是客户反馈分析,通过企业级客户反馈分析可以将来自不同渠道的零散、杂乱的客户反馈信息整合在一个统一的报表里供企业使用。
读懂大数据时代下的“客户心声”
慧锐系统公司客户心声分析部副总裁DanielZiv
建立协同统一的“客户心声大数据”分析平台
海量、多样化的“客户心声大数据”导致企业难以对来自不同渠道、杂乱无章的客户反馈信息进行统一分析。另一方面,由于企业各部门所接触的客户信息获取渠道不尽相同,所使用的挖掘客户信息应用工具也多种多样,因此导致企业各部门获得的客户心声也大相径庭,企业难以区分工作重点进而采取相应的行动,进而导致企业受到“无关联倾听”的困扰。凯捷管理顾问公司报告显示表明56%的调查受访者认为“组织孤岛”是利用大数据进行有效决策的最大障碍。
因此,建立协同统一的“客户心声大数据”分析平台有助于企业全面洞察客户的真实“心声”和诉求,真正为企业决策提供有用信息。在技术层面,企业可以应用能提供统一分析功能的解决方案。Verint的运营管理优化套件可以将来自不同渠道的数据协同处理,构建成一个统一的分析平台,将所有分析结果呈现在统一界面上。企业可以在这个统一的界面上看到来自于语音分析客户投诉抱怨的焦点在哪里,来自于文本分析当前媒体的热点在哪里,提到最多的关注点在哪里,以及客户的喜好心声。同时,企业还需优化组织结构来解决各部门在客户心声数据分析上各自为政的问题。
目前,虽然距离大数据真正落地还有一段距离,但是语音分析、文本分析等“客户心声”分析技术在国内已经不是比较新的技术,在电信、金融、保险等各行业的企业都有成功实践。在大数据时代,对企业而言,从海量非结构化数据中获取全面、真实的“客户心声”洞察力是挑战但更是机遇。借助有效的客户心声分析技术将有助于企业提高绩效,提升竞争力并实现企业智能化管理。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05