
大数据并购下的融资需求_数据分析师
对于一个敏锐的投资人来说,大数据是近两年来不容错过的热点。但是对于信托公司来说,大数据行业里的公司普遍存在规模较小,盈利模式不明确等特点,比较难以入手。
不过,随着行业上升发展,机会正在慢慢出现——大型互联网企业已经形成了多种相对成熟的大数据应用模式,并加速向传统领域拓展;加之IT厂商要迅速抢占大数据市场,实现产业链布局,都不谋而合地选择外延式扩张。在这一过程中,对资金的需求就大大增加。这对信托来说,是个机会。
行业概况
大数据是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合。处理流程主要有数据采集、数据导入/预处理、统计分析和数据挖掘四步骤。从2014年起,中国大数据市场开始进入高速发展期,市场规模预计突破75.7亿元,实现28.4%的增速。
(一)产业链包含产品、服务和数据提供商
1.解决方案提供商主要由传统IT厂商转型而来
这类厂商主要包括传统 IT 厂商和新兴的大数据创业公司,通过一系列收购来提升大数据解决方案服务能力。但总体上,国内大数据解决方案提供商实力较弱,产品一些关键行业还未形成影响力。
2.处理服务提供商的主体是云服务商
处理服务提供商主要为企业和个人用户提供大数据分析和价值挖掘服务。按照提供的服务是在线、离线和是否提供分析的基础数据两个维度,服务模式可划分为四类:第一类是在线纯分析服务提供商。如阿里云的开放数据处理服务(ODPS)、百度的大数据引擎、腾讯的数据云等;第二类是既提供数据又提供在线分析的提供商。例如Twitter 基于实时搜索数据的产品满意度分析,百度推出的大数据营销服务“司南”;第三类是单纯提供离线分析服务的提供商;第四类是既提供数据又提供离线分析服务的提供商。
3.大数据资源提供商
包括数据拥有者和数据流通平台两个主要类型。例如美国电信运营商 Verizon 推出的大数据应用精准营销洞察,将向第三方企业和机构出售其匿名化和整合处理后的用户数据。国内阿里巴巴公司推出的淘宝量子恒道、数据魔方和阿里数据超市等,属于此种类型。
(二)上市公司有20多家
主要是解决方案提供商和处理服务提供商,这类公司市盈率基本都在100以上。而纯粹的数据资源提供商不多,很多提供数据资源的企业是依托在某一传统领域的经营而积累了数据,但大数据并非其主营业务,例如环境监测行业龙头雪迪龙开拓环保大数据互联网服务模式。我们不把这类公司归为数据资源提供商。
行业趋势
(一)地方政府对大数据发展的三种推动模式
各有侧重:模式一是强调研发及公共领域应用。如上海市《推进大数据研究与发展三年行动计划》提出,将在三年内选取医疗卫生、食品安全、终身教育、智慧交通、公共安全、科技服务 6 个有基础的领域,建设大数据公共服务平台。模式二是强调以大数据引领产业转型升级。如北京中关村《关于加快培育大数据产业集群推动产业转型升级的意见》提出,要充分发挥大数据在工业化与信息化深度融合中的关键作用,推动中关村国家自主创新示范区产业转型升级。三是强调建立大数据基地,吸纳企业落户。
(二)互联网为领导者,加速向传统领域拓展
大数据广泛应用于各行业,互联网是大数据应用的发源地,大型互联网企业是当前大数据应用的领跑者,形成了多种相对成熟的大数据应用模式。此外,大数据应用加速向传统领域拓展,目前,传统行业中,金融、零售、电信、公共管理、医疗卫生等领域已经在积极探索和布局大数据应用。主要呈现两种发展方向:一是整合行业或自身内部的数据进行挖掘分析,二是借助外部数据(主要是互联网数据)实现相关应用。例如,金融机构通过收集互联网用户的社交数据、历史交易数据来评估用户的信用等级。目前数据变现最为确定的两个途径:一是征信、二是数据精准营销,此外,建设智慧城市,尤指在政府和公共服务领域的应用也是大数据的主要作用之一。
(三)IT厂商外延式扩张带来并购业务机会
2011年,麦肯锡、世界经济论坛等知名机构对大数据这种数据驱动的创新进行了研究总结,才在全世界掀起了一股大数据热潮,到今天大数据产业和的应用发展不过几年的时间。IT厂商要迅速抢占大数据市场,实现产业链布局,都不谋而合地选择外延式扩张。
总结目前IT公司的并购特点,一方面通过收购垂直行业企业以完善公司产业链布局,加强技术层面的实力,另一方面通过水平式扩张,不断寻找新兴行业优势企业,打开大数据应用的领域。可见在计算机软硬件领域和金融、医药、车联网、智慧城市、云计算等应用领域将存在大量并购业务机会。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16