
大数据并购下的融资需求_数据分析师
对于一个敏锐的投资人来说,大数据是近两年来不容错过的热点。但是对于信托公司来说,大数据行业里的公司普遍存在规模较小,盈利模式不明确等特点,比较难以入手。
不过,随着行业上升发展,机会正在慢慢出现——大型互联网企业已经形成了多种相对成熟的大数据应用模式,并加速向传统领域拓展;加之IT厂商要迅速抢占大数据市场,实现产业链布局,都不谋而合地选择外延式扩张。在这一过程中,对资金的需求就大大增加。这对信托来说,是个机会。
行业概况
大数据是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合。处理流程主要有数据采集、数据导入/预处理、统计分析和数据挖掘四步骤。从2014年起,中国大数据市场开始进入高速发展期,市场规模预计突破75.7亿元,实现28.4%的增速。
(一)产业链包含产品、服务和数据提供商
1.解决方案提供商主要由传统IT厂商转型而来
这类厂商主要包括传统 IT 厂商和新兴的大数据创业公司,通过一系列收购来提升大数据解决方案服务能力。但总体上,国内大数据解决方案提供商实力较弱,产品一些关键行业还未形成影响力。
2.处理服务提供商的主体是云服务商
处理服务提供商主要为企业和个人用户提供大数据分析和价值挖掘服务。按照提供的服务是在线、离线和是否提供分析的基础数据两个维度,服务模式可划分为四类:第一类是在线纯分析服务提供商。如阿里云的开放数据处理服务(ODPS)、百度的大数据引擎、腾讯的数据云等;第二类是既提供数据又提供在线分析的提供商。例如Twitter 基于实时搜索数据的产品满意度分析,百度推出的大数据营销服务“司南”;第三类是单纯提供离线分析服务的提供商;第四类是既提供数据又提供离线分析服务的提供商。
3.大数据资源提供商
包括数据拥有者和数据流通平台两个主要类型。例如美国电信运营商 Verizon 推出的大数据应用精准营销洞察,将向第三方企业和机构出售其匿名化和整合处理后的用户数据。国内阿里巴巴公司推出的淘宝量子恒道、数据魔方和阿里数据超市等,属于此种类型。
(二)上市公司有20多家
主要是解决方案提供商和处理服务提供商,这类公司市盈率基本都在100以上。而纯粹的数据资源提供商不多,很多提供数据资源的企业是依托在某一传统领域的经营而积累了数据,但大数据并非其主营业务,例如环境监测行业龙头雪迪龙开拓环保大数据互联网服务模式。我们不把这类公司归为数据资源提供商。
行业趋势
(一)地方政府对大数据发展的三种推动模式
各有侧重:模式一是强调研发及公共领域应用。如上海市《推进大数据研究与发展三年行动计划》提出,将在三年内选取医疗卫生、食品安全、终身教育、智慧交通、公共安全、科技服务 6 个有基础的领域,建设大数据公共服务平台。模式二是强调以大数据引领产业转型升级。如北京中关村《关于加快培育大数据产业集群推动产业转型升级的意见》提出,要充分发挥大数据在工业化与信息化深度融合中的关键作用,推动中关村国家自主创新示范区产业转型升级。三是强调建立大数据基地,吸纳企业落户。
(二)互联网为领导者,加速向传统领域拓展
大数据广泛应用于各行业,互联网是大数据应用的发源地,大型互联网企业是当前大数据应用的领跑者,形成了多种相对成熟的大数据应用模式。此外,大数据应用加速向传统领域拓展,目前,传统行业中,金融、零售、电信、公共管理、医疗卫生等领域已经在积极探索和布局大数据应用。主要呈现两种发展方向:一是整合行业或自身内部的数据进行挖掘分析,二是借助外部数据(主要是互联网数据)实现相关应用。例如,金融机构通过收集互联网用户的社交数据、历史交易数据来评估用户的信用等级。目前数据变现最为确定的两个途径:一是征信、二是数据精准营销,此外,建设智慧城市,尤指在政府和公共服务领域的应用也是大数据的主要作用之一。
(三)IT厂商外延式扩张带来并购业务机会
2011年,麦肯锡、世界经济论坛等知名机构对大数据这种数据驱动的创新进行了研究总结,才在全世界掀起了一股大数据热潮,到今天大数据产业和的应用发展不过几年的时间。IT厂商要迅速抢占大数据市场,实现产业链布局,都不谋而合地选择外延式扩张。
总结目前IT公司的并购特点,一方面通过收购垂直行业企业以完善公司产业链布局,加强技术层面的实力,另一方面通过水平式扩张,不断寻找新兴行业优势企业,打开大数据应用的领域。可见在计算机软硬件领域和金融、医药、车联网、智慧城市、云计算等应用领域将存在大量并购业务机会。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16