
大数据并购下的融资需求_数据分析师
对于一个敏锐的投资人来说,大数据是近两年来不容错过的热点。但是对于信托公司来说,大数据行业里的公司普遍存在规模较小,盈利模式不明确等特点,比较难以入手。
不过,随着行业上升发展,机会正在慢慢出现——大型互联网企业已经形成了多种相对成熟的大数据应用模式,并加速向传统领域拓展;加之IT厂商要迅速抢占大数据市场,实现产业链布局,都不谋而合地选择外延式扩张。在这一过程中,对资金的需求就大大增加。这对信托来说,是个机会。
行业概况
大数据是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合。处理流程主要有数据采集、数据导入/预处理、统计分析和数据挖掘四步骤。从2014年起,中国大数据市场开始进入高速发展期,市场规模预计突破75.7亿元,实现28.4%的增速。
(一)产业链包含产品、服务和数据提供商
1.解决方案提供商主要由传统IT厂商转型而来
这类厂商主要包括传统 IT 厂商和新兴的大数据创业公司,通过一系列收购来提升大数据解决方案服务能力。但总体上,国内大数据解决方案提供商实力较弱,产品一些关键行业还未形成影响力。
2.处理服务提供商的主体是云服务商
处理服务提供商主要为企业和个人用户提供大数据分析和价值挖掘服务。按照提供的服务是在线、离线和是否提供分析的基础数据两个维度,服务模式可划分为四类:第一类是在线纯分析服务提供商。如阿里云的开放数据处理服务(ODPS)、百度的大数据引擎、腾讯的数据云等;第二类是既提供数据又提供在线分析的提供商。例如Twitter 基于实时搜索数据的产品满意度分析,百度推出的大数据营销服务“司南”;第三类是单纯提供离线分析服务的提供商;第四类是既提供数据又提供离线分析服务的提供商。
3.大数据资源提供商
包括数据拥有者和数据流通平台两个主要类型。例如美国电信运营商 Verizon 推出的大数据应用精准营销洞察,将向第三方企业和机构出售其匿名化和整合处理后的用户数据。国内阿里巴巴公司推出的淘宝量子恒道、数据魔方和阿里数据超市等,属于此种类型。
(二)上市公司有20多家
主要是解决方案提供商和处理服务提供商,这类公司市盈率基本都在100以上。而纯粹的数据资源提供商不多,很多提供数据资源的企业是依托在某一传统领域的经营而积累了数据,但大数据并非其主营业务,例如环境监测行业龙头雪迪龙开拓环保大数据互联网服务模式。我们不把这类公司归为数据资源提供商。
行业趋势
(一)地方政府对大数据发展的三种推动模式
各有侧重:模式一是强调研发及公共领域应用。如上海市《推进大数据研究与发展三年行动计划》提出,将在三年内选取医疗卫生、食品安全、终身教育、智慧交通、公共安全、科技服务 6 个有基础的领域,建设大数据公共服务平台。模式二是强调以大数据引领产业转型升级。如北京中关村《关于加快培育大数据产业集群推动产业转型升级的意见》提出,要充分发挥大数据在工业化与信息化深度融合中的关键作用,推动中关村国家自主创新示范区产业转型升级。三是强调建立大数据基地,吸纳企业落户。
(二)互联网为领导者,加速向传统领域拓展
大数据广泛应用于各行业,互联网是大数据应用的发源地,大型互联网企业是当前大数据应用的领跑者,形成了多种相对成熟的大数据应用模式。此外,大数据应用加速向传统领域拓展,目前,传统行业中,金融、零售、电信、公共管理、医疗卫生等领域已经在积极探索和布局大数据应用。主要呈现两种发展方向:一是整合行业或自身内部的数据进行挖掘分析,二是借助外部数据(主要是互联网数据)实现相关应用。例如,金融机构通过收集互联网用户的社交数据、历史交易数据来评估用户的信用等级。目前数据变现最为确定的两个途径:一是征信、二是数据精准营销,此外,建设智慧城市,尤指在政府和公共服务领域的应用也是大数据的主要作用之一。
(三)IT厂商外延式扩张带来并购业务机会
2011年,麦肯锡、世界经济论坛等知名机构对大数据这种数据驱动的创新进行了研究总结,才在全世界掀起了一股大数据热潮,到今天大数据产业和的应用发展不过几年的时间。IT厂商要迅速抢占大数据市场,实现产业链布局,都不谋而合地选择外延式扩张。
总结目前IT公司的并购特点,一方面通过收购垂直行业企业以完善公司产业链布局,加强技术层面的实力,另一方面通过水平式扩张,不断寻找新兴行业优势企业,打开大数据应用的领域。可见在计算机软硬件领域和金融、医药、车联网、智慧城市、云计算等应用领域将存在大量并购业务机会。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07