
互联网+ 大数据已经来了……
过去几年随着社交网络、电子商务和移动互联网的发展,人类社会的数据量迅速激增,据统计目前人类一年产生的数据就相当于人类进入现代化以前所有历史的总和。这个数据量是异常庞大的,它往往以一个新的单位进行计量——“PB”。1个PB有多大呢?它相当于2的50次方个字节。如果你对此没有概念,那么简单来说,《史记》约有52万多汉字,1个PB能够存储至少10亿部《史记》。据统计我国2013年约产生8亿PB的数据量,其中以百度、腾讯、阿里为代表的互联网企业产生约1000个PB的数据量。人类现在正处在一个以“PB”为数据单位的新时代,这个时代被称为Big Data,或者我们现在更为熟悉的名称——大数据。在大数据时代中,人们似乎是淹没在了数据的海洋。说淹没在数据的海洋,实在是低估了海的深度和宽度,也许数据的银河或者宇宙更为合适。
大数据会怎么样影响我们的生活?简单来说,它会让我们的生活更困难或者更容易——取决于你是否拥有分析大数据的技术。毫无疑问要想在海量数据中理出头绪不是一件容易的事情,如果你不具备分析数据的能力,大数据会让我们的生活更困难。例如每逢“双十一”,“剁手党”都面临痛苦的抉择:打折的商品实在太多,买什么才好呢?最终一不小心,信用卡刷爆,买了一大堆自己不需要的商品,只得含泪吃半年的“康师傅”。但是更多的时候,大数据会让我们的生活变得容易,因为科技的发展比数据的积累更迅速,过去几年人类已经发明了许多分析数据、处理数据的方法,这些方法已经在为我们服务。
先来看几个例子。谷歌公司每天都会收到来自全球超过30亿条的搜索指令,经过多年数据的累计,谷歌公司建立了“咳嗽”,“发热”等搜索关键字与流感地区的联系。于是在2009年谷歌成功的在美国预测了冬季流感的传播,并且精确到地区和州。2013年奥巴马连任总统,成为第一位依靠大数据当选的美国总统。竞选过程中他的数据挖掘团队为其制定竞选策略,分析选民舆论,使得奥巴马处处占得先机,最终获得胜利。再来看看大家熟悉的电子商务。淘宝、亚马逊或者京东的页面都经过了大数据技术的优化。你所看到的页面都是根据你的购物行为进行显示的。你所希望购买的商品会被显示在最显眼的地方,你喜欢的商品会被推荐给你,你在这些网站购物越多,这种分析就越准确,购物体验也就越流畅。也许今年的“双十一”,电商们会推出一款App,告诉你哪些商品你是不能错过的,这样就不会再发生去年的悲剧啦。
毫无疑问大数据正在改变着我们的生活。过去几年无论是医疗、健康、交通、公共安全,还是生活、购物、旅游、娱乐都已经逐渐建立起了大数据的分析系统,无论是国家还是企业对大数据的投入都数以亿计。大数据的应用也从早期的数据密集型行业(例如电信、金融、能源、科研、互联网),逐步向非数据密集型行业扩张。一个路边的奶茶店需要大数据吗?当然需要。借助微信平台,只需要扫一扫二维码,奶茶店就会获得粉丝的关注。有了这些数据不仅可以开展打折促销,还可以通过互动了解用户口味,推出新品。别忘了,电商巨头京东最近也开设了一家奶茶店,而显然京东会用大数据的方法来经营。
在大数据时代,数据不再是静止和陈旧的,任何被遗忘在服务器中的数据,都可能被重新利用,从而发现其中与我们、与行为、与现象的相关性。《大数据时代》的作者维克托·迈尔-舍恩伯格说,大数据的真实价值就像漂浮在海洋中的冰山,第一眼只能看到冰山一角,绝大部分都隐藏在表面之下。感谢科技的进步,今天我们已经能够看到冰山之下的绝大部分。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16