
中国不会只有一个大数据金融云如何做大市场蛋糕很关键
“在与金融云的合作中如何界定风险损失的权责?”“如何在抓取中规避数据被故意改动的可能性?”“通过金融知识图谱推定的借贷人信息准确概率如何?”5月15日晚,西南财大光华讲坛上,意犹未尽的听众纷纷抛出关心的议题。
这场以“金融创新之大数据云”为主题的演讲遇到热情的背后,正是金融企业亟待转型的现实需求。
作为主讲人,宜信公司高级副总裁、大数据创新中心总经理张小沛将大数据金融上的探索方向描述为“金融云平台”。其在接受金融投资报记者专访时表示,未来金融与场景的结合必将成为大潮流,而通过大数据金融云构建的生态体系,会让金融服务无缝发生。
A
突破风控手段局限性
当金融开始走向普惠,传统金融征信手法不能完全满足互联网金融业务风控需求的问题也随之暴露。不过,在金融遇上大数据之后,这个缺失已久的信用体系有了搭建的可能性。
在张小沛看来,风控、反欺诈、获客能力等,正是“金融云平台”的核心内容。她指出,在以往的纯线下流程中,信贷审核员需要一系列表格与流程核实贷款申请人的各项事项。而借助大数据分析方法,凭借在用户授权的情况下搜集到的数据,以及相关模型,就可以帮助信贷审核员实时得到这一申请人的信用分析结果,进而令“实时授信”成为可能。同时还可根据数据分析的结果,对不同信用等级的人进行风险定价,实现更加多元化的业务组合。
金融知识图谱正是这个体系的关键所在。“通过将宜信多年来记载贷款及风控数据,以及爬虫得到的互联网公开数据、合作伙伴授权的数据分类整合,通过算法和专家系统的经验,就形成了知识图谱。”张小沛表示,这有助于对个人的性格特征、信用状况、财富属性有更深层、更全面的理解。
B
打造生态场景无缝嵌入
“知识图谱”的构建,也为获客、实时授信、产品个性化推荐、贷后管理等诸多应用场景提供了可能性。通过将这种金融能力向生态系统的合作伙伴去分享,就可以为大数据提供新的变现手段。“金融云的服务是对外开放的,合作伙伴们可以按需购买,比如需要做流动性贷款,就可以只寻求风控系统方面的合作。”张小沛认为,未来金融往下走,与场景的结合成为大潮流,而通过大数据金融云构建的生态体系,将会让金融服务无缝发生。
一个通过云数据将金融和相关产业聚合起来的巨大生态圈也由此形成。
值得关注的是,随着大数据的风靡,人们也越来越担心自身的信息安全,由此带来的数据修改或无可避免。如何保证数据的真实性?对此,张小沛表示,在具体的操作中,为了尽可能的对数据去噪,应该使用多方数据来进行交叉验证,同时通过数据门槛,去伪存真。
C
共同做大“金融云”版图
“我从互联网出身,现在跨界来做金融,其中有很多可能性。”张小沛说道。而对于在成都感受到的热情,她向记者表示,这说明很多人对这个领域都有好奇心。“成都作为西南的重镇,有很多传统行业,通过科技、大数据、或者说移动互联网的很多技术手段,其中都蕴含着机遇。”
值得注意的是,希望通过大数据做开放金融云平台的,并不仅仅是宜信,其中就包括同样在做“生态系统”的阿里金融云。
面对随之而来的竞争,张小沛很坦然。“中国最终不会只有一个生态体系,而会是多个生态体系并存,就如同银行中的五大行。同时,以金融为核心竞争力的,未来也不会只有一家,不过想要建立双赢或多赢的生态服务体系,门槛还是非常高的,预计最终不会超过10家。”
事实上,张小沛指出,目前数据的价值刚刚被唤醒,大数据+金融其实还有很大的市场空间。在中国整体大市场下,实体对金融的需求如此旺盛,但传统的金融机构满足传统的普惠金融需求方面其实是一个很大的缺口。“做市场份额有两种途径,一种是市场份额只有这么大,大家都来争夺,你多我就少,”张小沛说,“但我们更看重另一种,即蛋糕现在如此之小,大家应一起来做大,这样首先多数人都可以从金融普惠中,满足融资需求,且成本更低,速度更快。而作为从业者,也能够获得对应的份额。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22