京公网安备 11010802034615号
经营许可证编号:京B2-20210330
中国不会只有一个大数据金融云如何做大市场蛋糕很关键
“在与金融云的合作中如何界定风险损失的权责?”“如何在抓取中规避数据被故意改动的可能性?”“通过金融知识图谱推定的借贷人信息准确概率如何?”5月15日晚,西南财大光华讲坛上,意犹未尽的听众纷纷抛出关心的议题。
这场以“金融创新之大数据云”为主题的演讲遇到热情的背后,正是金融企业亟待转型的现实需求。
作为主讲人,宜信公司高级副总裁、大数据创新中心总经理张小沛将大数据金融上的探索方向描述为“金融云平台”。其在接受金融投资报记者专访时表示,未来金融与场景的结合必将成为大潮流,而通过大数据金融云构建的生态体系,会让金融服务无缝发生。
A
突破风控手段局限性
当金融开始走向普惠,传统金融征信手法不能完全满足互联网金融业务风控需求的问题也随之暴露。不过,在金融遇上大数据之后,这个缺失已久的信用体系有了搭建的可能性。
在张小沛看来,风控、反欺诈、获客能力等,正是“金融云平台”的核心内容。她指出,在以往的纯线下流程中,信贷审核员需要一系列表格与流程核实贷款申请人的各项事项。而借助大数据分析方法,凭借在用户授权的情况下搜集到的数据,以及相关模型,就可以帮助信贷审核员实时得到这一申请人的信用分析结果,进而令“实时授信”成为可能。同时还可根据数据分析的结果,对不同信用等级的人进行风险定价,实现更加多元化的业务组合。
金融知识图谱正是这个体系的关键所在。“通过将宜信多年来记载贷款及风控数据,以及爬虫得到的互联网公开数据、合作伙伴授权的数据分类整合,通过算法和专家系统的经验,就形成了知识图谱。”张小沛表示,这有助于对个人的性格特征、信用状况、财富属性有更深层、更全面的理解。
B
打造生态场景无缝嵌入
“知识图谱”的构建,也为获客、实时授信、产品个性化推荐、贷后管理等诸多应用场景提供了可能性。通过将这种金融能力向生态系统的合作伙伴去分享,就可以为大数据提供新的变现手段。“金融云的服务是对外开放的,合作伙伴们可以按需购买,比如需要做流动性贷款,就可以只寻求风控系统方面的合作。”张小沛认为,未来金融往下走,与场景的结合成为大潮流,而通过大数据金融云构建的生态体系,将会让金融服务无缝发生。
一个通过云数据将金融和相关产业聚合起来的巨大生态圈也由此形成。
值得关注的是,随着大数据的风靡,人们也越来越担心自身的信息安全,由此带来的数据修改或无可避免。如何保证数据的真实性?对此,张小沛表示,在具体的操作中,为了尽可能的对数据去噪,应该使用多方数据来进行交叉验证,同时通过数据门槛,去伪存真。
C
共同做大“金融云”版图
“我从互联网出身,现在跨界来做金融,其中有很多可能性。”张小沛说道。而对于在成都感受到的热情,她向记者表示,这说明很多人对这个领域都有好奇心。“成都作为西南的重镇,有很多传统行业,通过科技、大数据、或者说移动互联网的很多技术手段,其中都蕴含着机遇。”
值得注意的是,希望通过大数据做开放金融云平台的,并不仅仅是宜信,其中就包括同样在做“生态系统”的阿里金融云。
面对随之而来的竞争,张小沛很坦然。“中国最终不会只有一个生态体系,而会是多个生态体系并存,就如同银行中的五大行。同时,以金融为核心竞争力的,未来也不会只有一家,不过想要建立双赢或多赢的生态服务体系,门槛还是非常高的,预计最终不会超过10家。”
事实上,张小沛指出,目前数据的价值刚刚被唤醒,大数据+金融其实还有很大的市场空间。在中国整体大市场下,实体对金融的需求如此旺盛,但传统的金融机构满足传统的普惠金融需求方面其实是一个很大的缺口。“做市场份额有两种途径,一种是市场份额只有这么大,大家都来争夺,你多我就少,”张小沛说,“但我们更看重另一种,即蛋糕现在如此之小,大家应一起来做大,这样首先多数人都可以从金融普惠中,满足融资需求,且成本更低,速度更快。而作为从业者,也能够获得对应的份额。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26