
数据分析之独立样本的T-Test分析
比较两个独立样本数据之间是否有显著性差异,将实验数据与标准数据对比,查看
实验结果是否符合预期。T-Test在生物数据分析,实验数据效果验证中很常见的数
据处理方法。- T-table查找表
独立样本T-test条件:
1. 每个样本相互独立没有影响
2. 样本大致符合正态分布曲线
3. 具有同方差异性
单侧检验(one-tail Test)与双侧检验(Two-Tail Test)
基本步骤:
1.双侧检验, 条件声明 alpha值设置为0.05
根据t-table, alpha = 0.05, df = 38时, 对于t-table的值为2.0244
2. 计算自由度(Degree of Freedom)
Df = (样本1的总数 + 样本2的总数)- 2
3. 声明决策规则
如果计算出来的结果t-value的结果大于2.0244或者小于-2.0244则拒绝
4. 计算T-test统计值
5. 得出结论
如果计算结果在双侧区间之内,说明两组样本之间没有显著差异。
可重复样本的T-Test计算
同样一组数据在不同的条件下得到结果进行比对,发现是否有显著性差异,最常见
的对一个人在饮酒与不饮酒条件下驾驶车辆测试,很容易得出酒精对驾驶员有显著
影响
算法实现:
对独立样本的T-Test计算最重要的是计算各自的方差与自由度df1与df2
对可重复样本的对比t-test计算
程序实现:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
|
package com.gloomyfish.data.mining.analysis;
public class TTestAnalysisAlg {
private double alpahValue = 0.05; // default
private boolean dependency = false; // default
public TTestAnalysisAlg() {
System.out.println("t-test algorithm");
}
public double getAlpahValue() {
return alpahValue;
}
public void setAlpahValue(double alpahValue) {
this.alpahValue = alpahValue;
}
public boolean isDependency() {
return dependency;
}
public void setDependency(boolean dependency) {
this.dependency = dependency;
}
public double analysis(double[] data1, double[] data2) {
double tValue = 0;
if (dependency) {
// Repeated Measures T-test.
// Uses the same sample of subjects measured on two different
// occasions
double diffSum = 0.0;
double diffMean = 0.0;
int size = Math.min(data1.length, data2.length);
double[] diff = new double[size];
for(int i=0; i
{
diff[i] = data2[i] -data1[i];
diffSum += data2[i] -data1[i];
}
diffMean = diffSum / size;
diffSum = 0.0;
for(int i=0; i
{
diffSum += Math.pow((diff[i] -diffMean), 2);
}
double diffSD = Math.sqrt(diffSum / (size - 1.0));
double diffSE = diffSD / Math.sqrt(size);
tValue = diffMean / diffSE;
} else {
double means1 = 0;
double means2 = 0;
double sum1 = 0;
double sum2 = 0;
// calcuate means
for (int i = 0; i < data1.length; i++) {
sum1 += data1[i];
}
for (int i = 0; i < data2.length; i++) {
sum2 += data2[i];
}
means1 = sum1 / data1.length;
means2 = sum2 / data2.length;
// calculate SD (Standard Deviation)
sum1 = 0.0;
sum2 = 0.0;
for (int i = 0; i < data1.length; i++) {
sum1 += Math.pow((means1 - data1[i]), 2);
}
for (int i = 0; i < data2.length; i++) {
sum2 += Math.pow((means2 - data2[i]), 2);
}
double sd1 = Math.sqrt(sum1 / (data1.length - 1.0));
double sd2 = Math.sqrt(sum2 / (data2.length - 1.0));
// calculate SE (Standard Error)
double se1 = sd1 / Math.sqrt(data1.length);
double se2 = sd2 / Math.sqrt(data2.length);
System.out.println("Data Sample one - > Means :" + means1
+ " SD : " + sd1 + " SE : " + se1);
System.out.println("Data Sample two - > Means :" + means2
+ " SD : " + sd2 + " SE : " + se2);
|
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12