
如何利用大数据改进制造业_数据分析师
通过寻找决定过程效益的核心因素,大数据与在其上进行的高级分析如何厘清制造中的价值链,然后帮助管理人员采取行动,以便对制造过程进行持续改进。
下面是关于大数据如何颠覆制造过程的10条途径:
一、在生物制药行业的生产过程中,进一步提高精确度、质量和产量。
在生物制药的生产流程中,制造商通常需要对超过200种以上的变量进行监视,以便确保原料成分的纯净度,同时确保生产出的药品符合标准。让生物制药生产过程充满挑战的因素之一是:产量会在50%至100%之间变化,而且还无法马上辨别出原因。而使用高级分析,制造商能够对9个最能够影响产量变化的变量进行追踪。通过上述手段的帮助,他们将疫苗的产量提高了50%,每年在单一疫苗品种上节省的费用就达到500万至1000万美元。
二、加快IT、制造与营运的整合,让工业4.0的愿景更快成为现实。
工业4.0是由德国政府提出,旨在通过发展智能工厂,促进制造行业自动化。根据供应商、客户、有效产能以及费用的相关约束,大数据已经被用在优化生产进度方面。那些存在高度管制的行业里的制造业价值链上的厂商得益于德国供应商和制造商的帮助,正在大踏步迈向工业4.0。同时,以此为契机,这些厂商的各个部门能够充分发挥各自功能,而大数据和高级分析对于取得成功来说至关重要。
三、大数据帮助提高制造绩效的3个主要方面
分别是:更好的预测产品需求并调整产能(46%),跨多重指标理解工厂绩效(45%)以及更快地为消费者提供服务与支持(39%)。上述数据是根据“LNS研究与MESA国际”的近期调查得出的。
四、在六西格玛DMAIC(定义、测量、分析、改进及控制)框架中整合高级分析,以便持续改进
对一个由DMAIC驱动的改进计划的工作过程取得更加深入的理解,同时就该计划如何对制造绩效的所有其他领域造成的影响进行深入领会。与以往相比,这一领域的发展有望促使生产流程转向更加面向消费者驱动的方向。
五、与以往相比,能够更加细致地从供应商质量层面进行审视,同时能够更加精确地预测供应商的绩效
通过对大数据和高级分析的应用,制造商能够实时查看产品质量和配送准确度,对如何依据时间紧迫性在不同供应商之间分配订单生产任务进行权衡。对产品品质的管控优先于发货进度。
六、对产品合规性进行监测并且追溯到具体生产设备成为可能
通过在生产中心的所有设备上配备传感器,运营经理能够立即了解每一台设备的状况。通过高级分析,每台设备及其操作者的工况、绩效以及技能差异能够得以体现。对于改进生产中心的工作流程来说,这些数据非常重要。
七、只销售利润率最大的定制产品型号,或者以以销定产方式生产对产能影响最小的产品型号
对于拥有许多复杂产品型号的制造商来说,定制产品或者以销定产的产品能够带来更高的毛利率,但是在生产过程没有被合理规划的情形下,同样可能导致生产费用的急剧上升。运用高级分析,制造商能够计算出合理的生产计划,以便在生产上述定制或以销定产的产品时,对目前的生产计划产生最小程度的影响,进而将规划分析具体到设备运行计划、人员以及店面级别。
八、将质量管理和合规体系综合考虑并给予两者企业层面优先级
对于制造商来说,是时候针对产品质量和合规性给予更具战略性的眼光了。麦肯锡的文章给出了数个应用大数据和分析的制造商的例子,指出如何通过大数据以及分析手段,针对那些与产品质量管理和合规性最相关的参数进行分析,以便帮助管理人员获得更加深刻的理解。这些参数中的大部分是企业层面的,而不仅仅存在于产品质量管理或者合规部门。
九、量化每日产能对企业财务状况的影响并具体到生产设备层面
通过大数据和高级分析,制造商的财务状况和每日生产活动能够直接联系起来。通过对每台生产设备进行追踪,管理者能够了解工厂的运转效率,生产规划负责人和高级管理人员能够更好地调整生产规模。
十、通过对产品进行监测,制造商能够主动为客户提供预防性维护建议,以便提供更好的服务
制造商开始生产更加复杂的产品,需要在产品中配备板上传感器并通过操作系统加以管理。这些传感器能够收集产品运行情况的数据,并且根据情况发出预防性维护的通知。通过大数据和高级分析,这些维护建议能够在第一时间发出,消费者也就能够从中获得更多的价值。目前,通用电气在它的引擎和钻井平台上使用了类似的手法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04