
大数据战略重点实验室主任连玉明:打造中国大数据发展的战略和思想策源地
过去一年里,正在崛起的“中国数谷”贵阳奇迹般地创造出五个“中国第一”——中国首个大数据战略重点实验室、中国首个全域公共免费WIFI城市、中国首个块上集聚的大数据公共平台、中国首个政府数据开放示范城市和中国首个大数据交易所。
中国首个大数据战略重点实验室是什么?它对于贵阳大数据产业的发展将产生怎样的影响?5月13日,数据观记者专访了大数据战略重点实验室主任连玉明教授。
记者:贵阳为什么提出建立大数据战略重点实验室?背后有什么现实意义?
连玉明:大数据是人类文明发展和全球化进程的必然趋势。近年来,发展大数据产业成为贵阳坚守发展和生态“两条底线”,探索“双赢之路”的战略选择,为西部欠发达地区实现后发赶超找到一条新路径,这是认识、适应和引领新常态的思维变革。
然而,面对新机遇、新挑战、新任务,贵阳发展大数据需要洞察先机,抢占制高点,更需要研究先行和战略引领。基于此,在贵阳建立中国首家大数据战略重点实验室,意义重大,影响深远。
具体来说,大数据战略重点实验室是一个跨学科、专业性、国际化、开放型的研究平台,实验室将聚集国内外大数据相关专业研究者、管理者和决策者,立足全球大数据发展趋势和中国大数据发展实践,以大数据发展的重大理论和现实问题为主攻方向,加强大数据发展全局性、战略性、前瞻性研究和咨询。
记者:建立大数据战略重点实验室,贵阳具备哪些条件?底气在哪?
连玉明:大数据战略重点实验室是依托贵州大学贵阳创新驱动发展战略研究院(简称贵阳研究院)建立和运行的。贵阳研究院成立一年来,取得多项重要研究成果,正成为贵阳市委、市政府的重要思想库和智囊团,其研究成果在国内外拥有一定影响力,并在党和政府的相关战略制定和决策中得到广泛认同和应用。
在研究成果方面,贵阳研究院出版《块数据——大数据时代真正到来的标志》一书,首次创造性提出“块数据”理论。同时,立足创新驱动区域合作在贵阳的实践,挖掘中关村贵阳科技园的发展经验,从后发赶超、“四轮驱动”、大数据引领等多方面总结中关村贵阳科技园的发展战略、发展模式和发展方向,为贵阳市提升创新驱动区域合作能力提供智力支持,并出版《中关村贵阳科技园发展报告》。
同时,贵阳研究院聚焦创新驱动发展战略研究,与北京国际城市发展研究院深度融合发展,形成长效持续的协同创新机制,这些都为建立大数据战略重点实验室提供了有力的平台支撑。国际城市战略研究的创新成果,城市科学研究北京市重点实验室的实验平台,京筑良好互动的工作机制,跨学科、跨行业、跨地域的跨界思维,为大数据战略协同创新研究奠定了坚实基础。
记者:大数据战略重点实验室的研究方向和研究重点有哪些?
连玉明:大数据战略重点实验室未来的研究方向是通过对大数据发展进行全局性、战略性、前瞻性的研究和咨询,构建“块数据”理论模型和应用模型,研究编制“大数据指数”等,主要包括以下五项重点工作:
一是着眼全球大数据发展趋势和中国大数据发展实践,建立全球大数据理论信息中心,建设中国大数据发展规划数据库,每年定期出版《全球大数据发展报告》。
二是构建“块数据”理论模型和应用模型,每年出一本关于“块数据”的新书,为大数据发展提供理论支撑和方法支持。这就意味着,贵阳将成为“块数据”理念的实践基地,而大数据战略重点实验室将重点围绕“块数据”的利用和实践开展研究。
三是研究、编制和发布“大数据指数”,出版年度《大数据蓝皮书》。“大数据指数”不是一个单纯研究大数据的指数,而是涉及到政治、经济、文化、社会、民生等方方面面,它是一种思维方式和生产方式、生活方式,具体包括大数据的发展指数、创新指数、城市指数、市区指数、生活指数、品牌指数等。
四是建立DT空间,这是一个创客空间,包括DT众联空间、DT众创空间、DT众包空间、DT众筹空间等“四众”平台,其目的是吸引更多创客。DT空间不是一个房间,而是立足于国内、乃至全球,完全开放式的平台,对于愿意创业、勇于创新的个人或团队,DT空间都会给予支持。
五是筹建一个“中国DT产业50人论坛”,它的作用在于为大家搭建一个开放式协作创新平台、专业化决策咨询平台、网络化成果转化平台和国际化合作交流平台。
通过上述五项工作,我们的最终目标是使大数据战略重点实验室成为中国大数据发展的战略和思想策源地,成为中国大数据的发展风向标之一,成为有较大影响力和国际知名度的大数据高端战略智库。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23