
大数据的大红利_数据分析师
大数据,是指无法在可承受时间范围内用常规软件工具进行捕捉、管理、处理的数据集合。大数据的价值不在于数据量之大,而在于可从中挖掘出有用信息。信息技术的快速发展导致了海量数据的产生,大数据时代也因此悄然而至,2013年被国外媒体称为“大数据元年”。面对大数据时代的来临,山东必须积极应对,尽快把大数据摆上重要的战略位置。
实施大数据战略,是应对新一轮科技竞争的必然选择。近年来,随着大数据从概念走向实践,大数据所蕴含的价值得到了广泛重视,大数据也因此成为全球高科技产业竞争的前沿领域,西方发达国家已经展开了以大数据为核心的新一轮信息战略。美国将大数据战略上升为国家战略,奥巴马政府将大数据定义为“未来的新石油”,并投资20亿美元建成了可以处理全体地球人行为数据的云数据中心。广东、浙江、北京等经济发达省市,甚至包括经济相对落后的贵州,也先行一步,实施了大数据战略。山东在这轮大数据竞争中已经慢了半拍,如果不加快迎头赶上,势必影响我省在全国经济格局中的地位。
实施大数据战略,是推动经济结构转型升级的重要举措。推动经济结构转型升级,是山东建设经济文化强省的重要任务。信息时代,大数据和土地、劳动力、资本等生产要素一样,是促进经济增长的基本要素,能够对经济结构转型升级产生重大作用。美国德克萨斯大学的研究表明,大数据技术可以有效改善企业的数据资源利用能力,提高从数据到信息的转化率,让企业的决策更为准确,从而提高整体运营效率。实施大数据战略,可以用信息生产力与先进生产方式带动发展方式和经济运行机制的转变,从而为山东带来“数据红利”,提高我省经济的核心竞争力。
实施大数据战略,是创新政府治理方式的内在要求。党的十八届三中全会提出,促进国家治理体系和治理能力现代化。大数据不仅仅只是一次颠覆性的技术革命,更是一场思维方式、行为模式与治理理念的全方位变革,尤其在政府治理领域,大数据能够带来巨大的变革潜力和创新空间。
紧紧抓住并用好大数据带来的战略机遇,是新常态下山东实现由大到强、走在前列的潜力所在、希望所在。实施好大数据战略,我省应立足自身优势,及早谋划、尽快布局,从顶层设计、基础设施建设入手,抓好示范应用和人才支撑两个关键环节,把蕴藏在经济社会各个领域的大数据价值充分挖掘出来。
搞好顶层设计,出台扶持政策。顺应大数据发展趋势,结合我省十三五年规划的编制,抓紧研究制定大数据战略行动规划,明确产业定位、发展目标和保障措施,理清未来五年乃至今后一个时期我省大数据产业发展的思路。依托省经信委,成立大数据战略推进工作小组,强化对大数据建设工作的组织协调,确保把大数据战略行动规划落到实处。研究出台扶持大数据产业发展的有关政策。
加强基础设施建设,营造良好氛围。积极推进“宽带中国”战略在山东的实施,支持下一代互联网、第四代移动通信、公共无线网络、电子政务网、行业专网和物联网等网络基础设施建设,加快推进光纤入户,进一步提高无线宽带覆盖率和宽带网络接入速率。结合智慧山东的建设,建立政府大数据门户网站,搞好政府非涉密数据的整合和开放,打造全省统一的大数据平台。加强政务数据采集的管理和监督,确保数据真实、可靠。建立政府和社会联动的大数据形成机制,以政府数据公开共享,推动公共服务机构和商业机构开放与社会民生密切相关的公共数据。鼓励制造业企业和商业机构搞好对生产经营活动中的数据采集,形成覆盖生产过程和商业各环节各流程的数据库。建立和完善信息网络安全治理机制,构建起科学、高效的网络安全保障体系,确保大数据时代的网络安全。
推进示范应用,构建大数据产业链。充分发挥大数据在政府治理中的重要作用,重点在医疗卫生、交通运输、文化旅游、公共安全等领域,借助大数据提高公共管理和服务的科学性、前瞻性,并努力在全社会形成推广示范效应。鼓励能源、金融、电信、工业制造、商业零售、电子商务等重点领域的企业进行数据挖掘,把蕴藏在大数据中的价值运用到企业战略制定、经营决策和生产运行等方面。依托浪潮集团、山东中创等信息产业骨干企业,发展服务器、移动智能终端产品、云计算与大数据通用基础软件、移动互联网应用软件等产品,构建基本完整的电子信息软硬件产品链。加大对大数据企业的培植力度,积极引进国内外数据存储、分析和应用服务的高端企业,逐步集聚一批国家部委的信息分析中心,争取把山东打造成全国信息交换枢纽和信息存储中心。学习借鉴北京、上海等地的先进经验,在有条件的城市规划建设大数据产业园区,运用市场机制集聚大数据产业创新资源。
强化人才支撑,促进关键共性技术研发。鼓励我省高等院校开设与大数据相关的本科和研究生专业,培养大数据研究人员和工程师等高端人才。推动省内外高校、科研院所与行业企业深度合作,建立教育实践和培训基地,培养大数据技术研发、市场推广、服务咨询等应用型人才。依托山东大数据产业联盟,建立大数据公共服务平台,加强关键共性技术攻关,实现核心技术突破。引导建立高校大数据科研项目与企业的合作机制,探索成熟大数据产品和企业的商业模式,推动大数据项目和产品尽快实现市场效益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18