
存起来用起来联起来 深耕大数据产业潜力领域_数据分析师
“大数据发展要经历"存起来""用起来"和"联起来"三个阶段,目前国内和国外大数据正处于"存起来"向"用起来"发展的阶段。”近日,在接受记者采访时,无锡华云数据技术服务有限公司首席战略官郁珉说。
“贵州发展大数据产业,可立足本土扩大开放,关注还未被深耕但很有潜力的领域,通过政策扶持促进这些行业和大数据的融合发展。”郁珉建议。
开放合作 大数据是共享资源
“在我看来,大数据其实是相对于静态性、单纯的小数据而言,指比传统数据有更长的生命周期、更加活跃的应用空间,更多的维度去采集和描述的数据。”郁珉说,大数据最早叫做数据库,发展之后称之为数据仓库,后面演变成现在所说的大数据。
在郁珉看来,大数据并不是一个独立的产业,而是应用于跨行业的。从大数据的发展趋势来看,它凌驾于行业之上、超越行业本身发展,并能促成行业的业务创新。
有人说大数据好比未来的“石油”,是一种战略资源,现在发展大数据是在为5年后、甚至10年后作储备。对此,郁珉有着自己更为客观的看法。
“大数据对未来世界的影响和改变世界的力量无疑是巨大的,说它是战略资源需要储备,这种出发点是基于资源有限、只能供一部分人使用、另一部分人不享受的消耗品的角度来说的。”郁珉解释道,在互联网领域存在一种开放、共享和合作的价值观,在这种价值观的前提下,互联网资源不应该成为稀缺资源,大数据应该是共享资源。
大数据发展要经历三个阶段
郁珉说,大数据发展分为三个阶段。第一个阶段叫做“存起来”,就是把数据存放堆集起来,表现在数据的大规模、多样性,数据有可以被利用的价值。
第二阶段是“用起来”,这个阶段有三方面特点,第一是采集,采集的角度和范围是尽可能扩张的,有一种主动性;第二是容易访问,可以灵活查询和调用;第三是分析,这种分析是基于大数据的内部关联,比如建立数据模型,进行模型推理等。目前国内和国外的大数据基本处于第一阶段向第二阶段发展的过程。
“大数据第三个阶段叫"联起来",目前国内外大数据都还没有发展到这个阶段。”郁珉介绍,“联起来”的表现在于无论是行业、企业或者个人的大数据都是自我组织和自我成长的,积累经验并不断完善自己的数据结构。大数据会自我表达给予和需要,表达自己可提供的数据和经验,同时表达自身需要别人提供的数据和经验。与此同时,基于大数据的自我表达和自我成长,大数据将会有社区化的方式来联合,联合起来将会产生更深远的智慧。“这就不仅是数据,而是技术了。在云的世界里,每个大数据都会互相握手,互相表达,互相获取大数据的经验,从而再获得自己的成长。”郁珉说。
贵州可立足本土深耕潜力领域
“虽然国内外大数据发展总体处于早期阶段,但不同行业间发展也参差不齐,目前国内的电商和互联网产业处于"用起来"比较发达的阶段,但在传统制造业、政府部门等还处于"存起来"的第一阶段,同时国外的医药产业、大型制造业及金融业相对国内都更加成熟和领先。”郁珉分析道。
贵州、贵阳正在将大数据产业作为战略性新兴产业进行发展,成立了国内首个大数据交易所。对此郁珉表示非常赞赏:“成立大数据交易所,这是非常勇敢、非常积极的创举,大数据未来的发展是互相交易和分享的,这将给大数据本身的发展带来积极正面的作用。”
“贵州大数据产业发展劲头很足,在发挥大数据中心自身优势之外,可以关注国内还未发力但很有潜力的领域,比如水利、生物工程、医药健康及城镇化发展等方面,通过政策扶持将资源吸引到贵州,促进贵州这些行业和大数据的融合发展。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19