
存起来用起来联起来 深耕大数据产业潜力领域_数据分析师
“大数据发展要经历"存起来""用起来"和"联起来"三个阶段,目前国内和国外大数据正处于"存起来"向"用起来"发展的阶段。”近日,在接受记者采访时,无锡华云数据技术服务有限公司首席战略官郁珉说。
“贵州发展大数据产业,可立足本土扩大开放,关注还未被深耕但很有潜力的领域,通过政策扶持促进这些行业和大数据的融合发展。”郁珉建议。
开放合作 大数据是共享资源
“在我看来,大数据其实是相对于静态性、单纯的小数据而言,指比传统数据有更长的生命周期、更加活跃的应用空间,更多的维度去采集和描述的数据。”郁珉说,大数据最早叫做数据库,发展之后称之为数据仓库,后面演变成现在所说的大数据。
在郁珉看来,大数据并不是一个独立的产业,而是应用于跨行业的。从大数据的发展趋势来看,它凌驾于行业之上、超越行业本身发展,并能促成行业的业务创新。
有人说大数据好比未来的“石油”,是一种战略资源,现在发展大数据是在为5年后、甚至10年后作储备。对此,郁珉有着自己更为客观的看法。
“大数据对未来世界的影响和改变世界的力量无疑是巨大的,说它是战略资源需要储备,这种出发点是基于资源有限、只能供一部分人使用、另一部分人不享受的消耗品的角度来说的。”郁珉解释道,在互联网领域存在一种开放、共享和合作的价值观,在这种价值观的前提下,互联网资源不应该成为稀缺资源,大数据应该是共享资源。
大数据发展要经历三个阶段
郁珉说,大数据发展分为三个阶段。第一个阶段叫做“存起来”,就是把数据存放堆集起来,表现在数据的大规模、多样性,数据有可以被利用的价值。
第二阶段是“用起来”,这个阶段有三方面特点,第一是采集,采集的角度和范围是尽可能扩张的,有一种主动性;第二是容易访问,可以灵活查询和调用;第三是分析,这种分析是基于大数据的内部关联,比如建立数据模型,进行模型推理等。目前国内和国外的大数据基本处于第一阶段向第二阶段发展的过程。
“大数据第三个阶段叫"联起来",目前国内外大数据都还没有发展到这个阶段。”郁珉介绍,“联起来”的表现在于无论是行业、企业或者个人的大数据都是自我组织和自我成长的,积累经验并不断完善自己的数据结构。大数据会自我表达给予和需要,表达自己可提供的数据和经验,同时表达自身需要别人提供的数据和经验。与此同时,基于大数据的自我表达和自我成长,大数据将会有社区化的方式来联合,联合起来将会产生更深远的智慧。“这就不仅是数据,而是技术了。在云的世界里,每个大数据都会互相握手,互相表达,互相获取大数据的经验,从而再获得自己的成长。”郁珉说。
贵州可立足本土深耕潜力领域
“虽然国内外大数据发展总体处于早期阶段,但不同行业间发展也参差不齐,目前国内的电商和互联网产业处于"用起来"比较发达的阶段,但在传统制造业、政府部门等还处于"存起来"的第一阶段,同时国外的医药产业、大型制造业及金融业相对国内都更加成熟和领先。”郁珉分析道。
贵州、贵阳正在将大数据产业作为战略性新兴产业进行发展,成立了国内首个大数据交易所。对此郁珉表示非常赞赏:“成立大数据交易所,这是非常勇敢、非常积极的创举,大数据未来的发展是互相交易和分享的,这将给大数据本身的发展带来积极正面的作用。”
“贵州大数据产业发展劲头很足,在发挥大数据中心自身优势之外,可以关注国内还未发力但很有潜力的领域,比如水利、生物工程、医药健康及城镇化发展等方面,通过政策扶持将资源吸引到贵州,促进贵州这些行业和大数据的融合发展。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19