京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何准确又通俗易懂地解释大数据及其应用价值
大数据说到底就是一个大字。到底有多大?拿维基百科上的例子来说,CERN做的LHC(大型強子對撞機)周长27公里,里面一共有1.5亿个传感器,每秒钟读数达四千万次。每秒钟发生的粒子对撞高达6亿次。剔除99.999%的无用数据,每秒钟也有100次碰撞需要记录。如果在这些数据里面仅仅使用十万分之一,那么一年也要积累25 petabytes的数据,相当于25000个1TB的硬盘。
在这些数据里寻找希格斯玻色子的证据,是真正的大海捞针。这么大的数据你给我用Excel算算看?不要说计算,根本连载入内存都不可能。再比如说,Facebook据说拥有500亿以上的用户照片。之前美国波士顿发生了爆炸案,这些照片里可能就有爆炸案的线索。那你给我找找看那张照片上面有嫌犯?波士顿马拉松仅运动员就有两三万人,围观群众近五十万。在同一时间同一地点拍摄的照片可能有几十万张,录像可能有几千小时。用人工一张一张看过来是不切实际的。如果要考察爆炸案前后几天的照片那就更不现实了。还有的照片根本就没有时间和地点信息。
再举一个例子。2009年华盛顿大学的研究人员使用15万张Flickr上的图片,重建了整个罗马城的3D模型。整个重建过程的计算使用了496个CPU核心,耗时8小时。如果每张照片按100KB计算,总数据量达到15GB。至少要达到这个级别的数据,才能称得上大数据。下面为照片和重建模型的对比。
如何准确又通俗易懂地解释大数据及其应用价值?如何准确又通俗易懂地解释大数据及其应用价值?
大数据因为大,不仅远远超过人工的处理能力,也远远超过普通台式机的处理能力。只有特定的算法和特别设计的硬件架构才能够有效的处理大数据。简单说来,硬件上要把很多CPU或者很多台式机连起来,算法上采取分而治之的策略。有的数据前后没有关联,特别适合分而治之的方法。而处理互相联系多的数据就比较困难。如果只要寻找嫌犯的脸,可以对每张照片分别处理。如果要考虑连续拍摄的照片有些并没有捕捉到脸,但嫌犯的位置和穿着是相对不变的,这就要考虑照片之间的关系,要分而治之就相对困难一些。
举一个做加法的例子来说明分而治之。比如有两道加法题:34+18和54+39。这两道题目如果两个人分别计算,就比一个人计算要快一倍。这就是分治的优势。但是如果只有一道加法题怎么办?比如两个人要计算34+18,那只好一个人计算个位,一个人计算十位。十位上计算3+1=4,但是还必须考虑个位的进位。所以计算十位的人必须等待计算个位的人给出结果之后,再决定要不要在自己的结果上再加1。为了统一结果一等待,计算速度就变慢了,这就是我们说结果之间存在的关系拖慢计算。
既然大数据处理起来这么困难,为什么还要使用大数据?使用小数据不行吗?这就要说到大数据的应用。所谓机器学习,一般是首先建立一个数据之间关系的模型。然后通过数据来确定模型中的参数。这就是所谓训练。大多数模型都是比较简单的。建模的时候为了简便,往往忽略现实中的很多因素。但是数据多了以后,往往可以弥补模型的简陋。所以数据多是有好处的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01