京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的法律应对_数据分析师
在不知不觉中,我们已经进入大数据时代,无论你是否意识到,也无论你是否愿意。大数据现象在天文、物理、生物等领域已属平常,直到进入互联网领域,才逐渐引起人们的关注。大数据以P(1024T,1T=1024G)、E(1024P)或Z(1024E)为计量单位,数据量的增加为网络公司提供了精确把握用户群体和个体网络行为模式的基础,通过大数据的分析,可以实现个性化、精确化和智能化的广告推送和服务推广服务,创立比现有广告和产品推广形式性价比高数倍甚至数十倍的全新商业模式。
在大数据时代,每个人都是数据的贡献者,当你浏览网页、网购、扫描二维码、微博、微信以及安装手机APP时,你的个人信息、消费习惯、偏好、甚至你的社交圈子,就已经被大数据分析工具捕获。大数据分析工具使智能、高效地处理庞大数据成为现实,但同时它也能嗅探到你的所有信息,我们的城市在变得越来越智慧的同时,似乎也越来越危险了。可能你只不过经过了一个垃圾桶,就被判断出了通常几点吃早餐、早餐吃什么、以及将要去哪儿吃,然后被精确的投放了促销广告;也可能你只不过点了个匹萨,结果商家就清楚地掌握了你的联系方式、家庭住址、健康状况、近期活动、信用情况、家庭成员情况,甚至你当前的地理位置。现在的感觉用互联网流行词形容,当真是“细思恐极”。
大数据时代的来临,使人类历史仿佛突然进入了一个崭新的世界。在大数据面前,传统的保护手段显得苍白无力。传统的保护个人信息的法律手段“告知与许可”基本失效,因为大数据的价值不单纯来源于数据的基本用途,更多的源于数据的二次利用,很多数据在收集时并无意用作其他用途,而最终却产生了很多创新性的用途,这些都是无法事先告知的,也就没有所谓的事先同意了。传统的保护个人信息的技术手段“匿名化”基本失灵。
在传统手段无力的情况下,大数据时代个人信息保护需要新的治理思维:既不能阻碍大数据的发展,又不能以牺牲民众安全为代价。“告知与许可”的基本法律手段依然可发挥作用,但只适用于数据收集阶段,如浏览网页时普遍存在的cookie。此时应由用户选择是否接受数据的收集与分析以获得更好的用户体验,如果用户选择“否”,其任何数据不得被捕获。在数据的“二次利用”阶段,可考虑设置数据使用时效机制、大数据使用者惩罚机制、新技术强制适用机制。将数据使用限制在一定时效范围内,意味着大数据收集者不再可以永久的保留和利用数据,这有些类似于前述“格斯蒂亚案”确立的“被遗忘权”和美国加州新近推出的“橡皮擦法案”,但是适用范围不限于“被遗忘权”所针对的个人负面信息,适用对象也不限于“橡皮擦法案”针对的未成年人。大数据的价值决定了个人信息保护不可能单纯依赖企业自律,大数据使用者的责任只有在强制力规范下才能确保履行到位,只有严格的罚则才能防止企业为了利润罔顾大众安全。新的时代,法律始终要有技术支撑,“匿名化”技术可更新为“差别隐私”技术。企业真正需要的是有价值的数据,而不是窥探个人隐私。“差别隐私”技术通过故意的数据模糊处理,可以实现大数据库的查询只显示近似结果,而不是精确结果,挖出特定个人与特定数据点的联系将难以实现且耗费巨大,强制推行该技术,在现阶段不失为良策。
大数据时代人人“被裸奔”,已成为不争的事实,时间再也无法治愈一切。我们也许不得不接受这样的现状,但不意味着我们要放弃安全、默认风险,也不意味着数据使用者可以堂而皇之、不承担任何责任。任何新技术产生与发展的初衷和基础应是服务于人类,让人们的生活更简单安逸,而不是在人人头上悬一把达摩克利斯之剑,大数据也不例外。大数据时代,共赢是上策,利益平衡是关键。大数据开启了一次重大的时代转型,但仅仅是一个开始,就像维克托在《大数据时代》中谈到的,大数据时代并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代,大数据为我们提供的不是最终答案,更好的方法和答案还在不久的将来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29