京公网安备 11010802034615号
经营许可证编号:京B2-20210330
看清本质最重要 关于大数据你真的了解吗_数据分析师
在信息大爆炸的今天,云计算、大数据成为大家津津乐道的热门名词。无论是消费、金融、电信、交通,甚至是政治、慈善等等地方几乎都可以看到大数据的身影。大数据分析,也得到大众的认可和追捧。
与此同时,我们也要理性看待大数据,大数据是人类发展的得力助手,但并不是阿拉丁神灯,能满足人们的各种需求,大数据核心不在数据有多庞大,而是它蕴含的是计算和思维方式的转变,因此对于大数据可能常常会有一些疑惑。
大数据是新时代产物?
追溯数据分析的发展,早在1887年,美国统计学家赫尔曼·霍尔瑞斯为了统计1890年的人口普查数据发明了一台电动器来读取卡片上的洞数,该设备让美国用一年时间就完成了原本耗时8年的人口普查活动,由此在全球范围内引发了数据处理的新纪元。
可见数据分析一点也不新,其概念诞生已久,只是在近些年才大热而已。于过去相比,现在的科技更发达,通过网络,通过可穿戴设备等等每天收集着海量数据,数据的处理更依赖计算机,但最后的分析与解读人要人类完成。
多大才称得上大数据?
数据量到底多大才能叫大数据并没有严格的划分,大数据的“大”是宏观多变的意思,并是不指单纯的大小。大数据应该从其背后蕴含的大价值来理解,因为数据已经很多了,人类利用分析数据的能力很强了,我们能从数据当中发现以前不能发现的价值这个角度来理解。
统计出的数据绝对客观?
虽然数据都是有计算机在采集处理,但是也不可能做到绝对客观,计算机只是在按照程序机械的采集,比如在某宝上,销量高的商品不代表真的卖出去了,因为像那种只有一个商品销量奇高的店,99%都是刷单的结果。人的行为很复杂,绝对客观的统计本就很难,就更不要说没有感情的机器在统计,因此,对于大数据我们可以说它是相对客观的。
数据可以告诉我们不知道的内幕?
数据能告诉我们的只有数据,想要知道数据背后的内幕,则需要分析人员不仅仅单纯的统计数据,更要了解数据之间的关联进行分析和总结。
几年前,谷歌的一个研究小组在科学杂志《自然》上宣布其可以追踪美国境内流感的传播趋势,而这一结果仅利用谷歌搜索隐形的热门关键字便作出了结论。但在运行了十几个冬天之后,谷歌的预测比实际情况要夸张一倍。
究其原因,是因为谷歌不知道搜索关键词和流感传播之间到底有什么关联。谷歌的工程师们没有试图去搞清楚关联背后的原因。因此仅通过数据要找出事件背后的内幕是很困难的。
大数据是资讯部门的问题?
大数据的收集与储存,的确可以归类为资讯部门的业务。但定义该收集什么,如何收集,收集后该如何应用,绝对是业务主导部门该负责的。要求 IT 部门把大数据做好,就好像要求财务部门提昇公司获利一样,是本末倒置的。
未来大数据可以改变一切?
关于大数据的作用以及溢美之词早已泛滥于网络,似乎给了人们一种“大数据无所不能”的感觉。但大家可能有所忽视,大数据是对过去与发生的事情进行总结,其本身是没有创新性的,所以对于不同领域,不同项目必须要根据具体问题具体分析解决。大数据角色应该是我们工作生活的得力助手而非主宰。
结语
人类无法存储海量的信息,而丢失信息和误存储信息的比率又大得惊人,所以,大数据对我们而言才如此迷人。尽管迷人,但机器终究是机器,它无法取代人类的思考。就像基于数据和规则的人工智能始终无法取代具有创造性的人脑一样,大数据时代提供给我们的将是更快的运算、更丰富的数据分析结果,但如何使用,关键还在于我们自己。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06