
“互联网+大数据+行业” 颠覆或创造新的行业
随着“互联网+”的浪潮来袭,各行各业都在讨论如何结合大数据成功实现互联网化转型。
目前大数据产业发展进入了哪个阶段,前景又会如何?企业如何利用大数据发展自身?近日,记者就上述问题专访北京缔元信互联网数据技术有限公司CEO秦雯。
大数据产业进入应用落地阶段
“大数据来自业务又作用于业务,数据采集和应用与业务密不可分,因此在应用层面,大数据不是独立产业。”秦雯说,“但是大数据采集、处理、管理和应用是一个过程,需要有专业的知识和工具去帮助各行各业将大数据用起来,正如现代社 会信息化过程中催生了IT产业,数据化过程也需要DT专业团队提供解决方案和服务。”
秦雯认为,随着互联网技术和应用的普及,未来的社 会分工形态极可能从目前的垂直化转为水平层级化,无论是网络层、系统层、数据应用层都有可能出现平台化的服务。最终,当大数据深入到各行各业,每个人、每家企业、每个社区和每个城市都拥有自己的数据资产,数据像水、电、货币一样成为社 会运营的基础设施时,基于资产增值的数据流通和交易会形成一个更大的产业。
“国内大数据产业经过二三年的概念传播,已经走到了应用落地的阶段。”对于目前国内大数据产业的发展形式,秦雯认为,在我国作为基础设施的网络层越来越发达,并且从固网迅速向移 动网络迁移,为产生和获取更多的数据提供了物理条件。随之而来的是系统层的云计算不断成熟,越来越多的传统IT企业转型成为公有云、私有云或混合云的解决方案供应商。从应用层面看,面向C端已经涌现出大量数据驱动产品和服务;B端,在金融、健康、教育、娱乐等多个行业都是以大数据应用为创新点来驱动转型发展;而在区域上,各地勃兴的智慧城市建设,其智慧即由大数据产生。
企业网络营 销是大数据运用首爆点
“大数据有两个特性,一个是在线,基于互联网、物联网甚至未来万联网的。另一个是全样本,全过程、全方位。”秦雯说,前一个特性决定了单位数据的收集成本极低,后一个特性决定了数据能够完全客观真实地反映业务进程,这就是大数据的价值所在。
秦雯表示,网络营 销仍是国内大数据应用的首爆点,互联网金融紧随其后成为大数据应用开花结果的行业,其他如零售、文化、健康、教育、汽车制造、生活服务、3C等行业都已涌现出以大数据驱动的创新应用。动作更大影响也更大的则是区域市场,无论是东部,还是西部,智慧城市建设已经如火如荼,遍地开花。
国内大数据发展与发达国家的主要差别在于数据基础和全社 会的数据素养薄弱。发达国家传统数据应用已有百年多历史,“用数据说话”、“无数据不决策”已经融入政府、行业、企业和机构等各级组织,因此在全社 会形成了重视数据积累、数据管理和数据应用的生态环境。相对而言,国内数据素养基础比较薄弱,决策理念上重视数据的程度较低,因此整体上数据收集、管理和应用的水平较差。但这既是问题也是机会,尤其为在大数据资源、技术和应用理念上相对先进的互联网企业提供了巨大的发展机会。
参透“互联网+大数据+行业”
她表示,企业大数据应用的三大前提:有数据、有可用数据及具备用数据的科学决策观,分别对应企业的数据收集、数据管理和数据应用。这三个环节周而复始,共同构成一个企业大数据价值的循环链。
在操作层面,秦雯建议,企业如果要利用好大数据,首先要在战略思想上树立数据信仰;其次在企业核心管理层要有专人负责大数据战略的落地,任命首席数据官,负责对企业的大数据资源开发及应用策略进行规划,并带领团队或借力合作伙伴推进实施;再次,在企业内部要引导形成用数据说话和无数据不决策的文化氛围,让数据融入业务流程,甚至改造业务流程,创造全新的业务模式。
同时,秦雯认为,企业应当注重移 动端发展。移 动终端的便携性使得互联网真正能够实现随时随地在线联接,随着移 动网络的普及、云计算能力的扩大、终端的推陈出新,更大规模、更加多样化的移 动应用将会不断涌现,直到覆盖人们工作生活的每一个角落。同时,与移 动互联网共同发展的还有基于传感器的物联网,最终形成所谓万联网——Internet of Everything。“如果把IoE的世界比做一场交响乐,大数据就是这场音乐盛会的指挥家”,秦雯说,数据决定如何调配资源,把控进程、优化策略。对任何一个企业而言,能够参透互联网+大数据+行业的关系,谁就能把握先机颠覆或创造行业。
发展大数据产业贵州大有可为
数据挖掘的前提是有数据资源,秦雯表示,贵阳市是全国首个数据开放示范城市,这为贵阳做数据挖掘提供了良好的基础。贵阳应该在数据开放的相关规则、技术、应用上深入探索,形成可供全国各地借鉴的标准。
对于贵阳成立国内首个大数据交易所,秦雯建议,大数据交易所在服务上重视平台的开放性,吸引专业人才共建数据成果;在数据应用上大处着眼,小处着手;在平台架构上重视顶层设计;在数据处理和应用上重视标准建设。缔元信网络数据也期待有机会与贵阳交易所形成战略合作,共同推动中国大数据交易市场的发展。
对于贵州发展大数据产业,秦雯认为大有可为,贵州的对标,不是中关村,而应该是硅谷。硅谷的成就源自永不枯竭的创新,其基础是人才,而人才的支撑是教育。目前国内“逃离北上广”已经成为年青一代的选择,而国际上中国又有互联网领军市场地位,贵州可考虑抓住这个机会,吸纳全国乃至全球的优秀人才。同时,贵州要改善优化贵州高校资源,在高等教育水平上实现跨越式发展,为贵州成为中国的硅谷打下坚实的基础。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23