京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大学数据分析专业正面临三大难题_数据分析师
根据最新的调查发现,如何获取海量相关的数据集是商务智能与数据分析专业的专家教授和学生们所面临的最大的问题。
您的企业是否有多达几千兆字节的数据备用?您企业所在地的大学也许会需要这些数据哟。
当前,在培养和训练下一代的数据科学家方面所面临的最大挑战是如何寻找到海量相关的数据集,以便能够向学生们传授真实世界可实操的技能。这是Teradata大学网络部门所做的一项针对面向以大数据研究为职业生涯规划的Web学生培训计划商业智能调查所得到的一大最重要的发现。
调查结果显示,自2009年开始对第三国的商业智能进行访问研究以来,已经涉及并覆盖到43个国家的243所大学的专家教授,以及96所大学的学生。该调查研究是由三位学者进行的,包括泽维尔大学的ThaliniAriyachandra副教授,这位副教授通过电话接受了InformationWeek网站记者关于此次调查结果的采访。Teradata的全球联盟计划首席分析师BillFranks先生也参与了本次电话采访。
虽然我们的世界充斥着大数据,但据调查发现数据分析专业教育正面临三大挑战,45%的专家教授表示在进行商务智能和数据分析教学时,最大的挑战便是无法获得大数据集;第二大挑战是找到具备必要的基础技能的学生(这一比例占39%);第三是寻找合格的导师(这一比例占37%)。
既然有如此众多的大数据,为什么我们的大学不能使用这些大数据呢?
“我们想要的是那种存在于企业的数据集,这样,我们就能够教授给学生们现实世界中一些实际的可操作的经验。但想要获得那种企业的数据集目前仍然具有挑战性。”Ariyachandra教授表示。
Franks补充说:“大学里也有一些样品数据,但想要寻找到大型数据池,并获得相关的访问权限,仍然是一项很大的挑战。很多企业都不愿对外提供他们的数据,即使花费很大的功夫说服他们提供数据集,这些企业也宁愿以匿名的方式提供。”
这一问题相当重要,但又不是刚刚才出现的新问题。
“我就是一名通过专业培训的分析专家。我拥有统计学硕士学位。那已经在好多年前的事了,彼时的数据不像现在这么多。那时,我们用于学习培训的数据的量非常少而且是人为处理过滤过的。”弗兰克斯回忆说。
该调查研究还显示,越来越多的学生都集中于面向业务分析的专业,如业务分析师或IT专业人士。然而,只有16%的受访学生受访学生表示正在考虑将数据科学家作为自己的职业生涯。
而在另一方面,越来越多的学校则在开始增加数据科学营销和统计专业课程。
“越来越多的学者开始教授深度的统计和先进的预测分析类的技能课程。这方面的专业授课要比两年前多得多。而且,这一增加的趋势还将继续,学术界正在试图积极满足市场对于数据科学家的需求。”Ariyachandra说。
例如,企业都偏向于雇佣那些进行过相关实践,具备大数据集的实践经验的毕业生。Ariyachandra说:“但对于专家教授们所面临的难题是,我们如何提供具有实操经验的毕业生呢?”
据麦肯锡全球研究院2011年的研究显示,到2018年,美国市场将面临高达19万的数据科学家短缺。
这种短缺是大数据市场需求发展大趋势的一部分:分析业务的需求正在急剧增加,弗兰克斯说。
“有的人将这一需求称为‘预测分析’,还有些将其称为‘数据科学’,还有一些人称之为‘数据挖掘’。”他说。“但是,无论赋予其怎样的叫法,所有的最终都要归结于面向相同的一般原则:我们需要的适合的人才进入企业,以帮助前也分析他们的数据。”
一些商学院所开设的介绍信息系统的课程,现在正在将数据分析授课结合起来,并提供基本的BI课程,Ariyachandra教授补充说
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01