
大数据时代针对传统数据仓库的思考:首先不要因为大数据这个词扰乱了我们的的原则、规划和节奏。我们要一步步脚踏实地的跟进大数据的技术。
其次传统的数据仓库我昨天思考完写了四句话:
第一,技术和平台已经不是我们关注的重点。很多新客户型的时候他会犹豫,其实你有你的判断,你作为商务上你有你的所谓投资回报成本的考虑。但是技术上在传统结构化分析里面,它的差异性不是很大。那么做选型的时候是否能够处理传统的结构化数据?我相信还是一个重点,但是更大的重点应该放在如何更好的支撑应用和如何跟未来技术走向很好的结合。
第二:变化莫测的世界里做好架构管理才能以不变应万变的决策。所以我们更强调合理的原则和架构。这些年厂商提出来做数据仓库用10大原则、20大原则,原则越多越没用,原则少有效才能解决真正的问题。
第三,过去十年前做数仓,用一期项目整合300张表,现在可以整合1000张表,就是因为正确的方法论。一个好的方法论出来,关于开发管控和数据管控水平不断的提升,才能保证一家银行商业智能体系的发展。
第四个是引导客户主动分析和探索,只有通过这个才能改变传统业务人员分析思路和方法。
这四点是我们在新的数据平台里面,大数据时代新的数据仓库架构里面需要考虑的四个重点。
架构设计原则:做数据仓库架构设计过程中,我们更审慎的对待自身的原则,这六句话有它背后的道理,第一个是操作型和分析型处理分离原则。第二个就是做到数据集体程度、整合和共享原则。第三句话,尽量减少大量明晰数据搬迁和处理。第四个后台批量处理和前端联机访问分离原则。第五个是明晰数据使用审慎使用。这个原则很重要。我们在银行经常遇到很多问题,当业务部门提到一个需求说我要查明细,我们要审慎的对待,合理评估投入产出。最后一个就是做好统一技术平台。
关于数据仓库里面的四层架构:贴源的、主题整合、通用汇总、数据集市。哪个区域用什么策略我自己做十年了也没有任何调整。这就是好的架构。
自主开发体系:把数据仓库实施方法论能够很好的跟开发工具做结合。这种开发工具的结合,过去两年,我们实施十几个数据仓库平台里面发挥了很大的价值。客户对我们的评价:第一开发的东西可维护,第二质量相对较高,开发效率高。
另外永远不要把数据仓库建设和数据管控分开来谈。数据仓库依赖于数据管控,提升数据质量才能更好的服务于应用。这两个是不分割的,甚至它的业务牵头部门、主管部门都是一个。
引导业务人员上来主动访问,这种探索式的推动永远是你不要放弃的一个话题。它同前期推动来说很难,但是它后期给你银行整个分析水平的提升带来的价值非常大。
我们做数据仓库的,做数据管控的,我们不断给银行推要做随机查询。我们不断的强化这三个东西的重要性,但是这三个东西都是前期投入大,后期才能逐步慢慢见效发挥很大价值的地方。国内的工行,之所以它的数仓成为业界领先典范,就是因为它坚持走这三条路。
在座的新老客户,最后再跟大家说一下“我们做的工作都是前期投入产出比较不合适的,但是希望大家重视,希望大家从规划的角度解决好这三个概念的融合”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01