京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代针对传统数据仓库的思考:首先不要因为大数据这个词扰乱了我们的的原则、规划和节奏。我们要一步步脚踏实地的跟进大数据的技术。
其次传统的数据仓库我昨天思考完写了四句话:
第一,技术和平台已经不是我们关注的重点。很多新客户型的时候他会犹豫,其实你有你的判断,你作为商务上你有你的所谓投资回报成本的考虑。但是技术上在传统结构化分析里面,它的差异性不是很大。那么做选型的时候是否能够处理传统的结构化数据?我相信还是一个重点,但是更大的重点应该放在如何更好的支撑应用和如何跟未来技术走向很好的结合。
第二:变化莫测的世界里做好架构管理才能以不变应万变的决策。所以我们更强调合理的原则和架构。这些年厂商提出来做数据仓库用10大原则、20大原则,原则越多越没用,原则少有效才能解决真正的问题。
第三,过去十年前做数仓,用一期项目整合300张表,现在可以整合1000张表,就是因为正确的方法论。一个好的方法论出来,关于开发管控和数据管控水平不断的提升,才能保证一家银行商业智能体系的发展。
第四个是引导客户主动分析和探索,只有通过这个才能改变传统业务人员分析思路和方法。
这四点是我们在新的数据平台里面,大数据时代新的数据仓库架构里面需要考虑的四个重点。
架构设计原则:做数据仓库架构设计过程中,我们更审慎的对待自身的原则,这六句话有它背后的道理,第一个是操作型和分析型处理分离原则。第二个就是做到数据集体程度、整合和共享原则。第三句话,尽量减少大量明晰数据搬迁和处理。第四个后台批量处理和前端联机访问分离原则。第五个是明晰数据使用审慎使用。这个原则很重要。我们在银行经常遇到很多问题,当业务部门提到一个需求说我要查明细,我们要审慎的对待,合理评估投入产出。最后一个就是做好统一技术平台。
关于数据仓库里面的四层架构:贴源的、主题整合、通用汇总、数据集市。哪个区域用什么策略我自己做十年了也没有任何调整。这就是好的架构。
自主开发体系:把数据仓库实施方法论能够很好的跟开发工具做结合。这种开发工具的结合,过去两年,我们实施十几个数据仓库平台里面发挥了很大的价值。客户对我们的评价:第一开发的东西可维护,第二质量相对较高,开发效率高。
另外永远不要把数据仓库建设和数据管控分开来谈。数据仓库依赖于数据管控,提升数据质量才能更好的服务于应用。这两个是不分割的,甚至它的业务牵头部门、主管部门都是一个。
引导业务人员上来主动访问,这种探索式的推动永远是你不要放弃的一个话题。它同前期推动来说很难,但是它后期给你银行整个分析水平的提升带来的价值非常大。
我们做数据仓库的,做数据管控的,我们不断给银行推要做随机查询。我们不断的强化这三个东西的重要性,但是这三个东西都是前期投入大,后期才能逐步慢慢见效发挥很大价值的地方。国内的工行,之所以它的数仓成为业界领先典范,就是因为它坚持走这三条路。
在座的新老客户,最后再跟大家说一下“我们做的工作都是前期投入产出比较不合适的,但是希望大家重视,希望大家从规划的角度解决好这三个概念的融合”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22